Solve
$$ \huge 4^x + 6^x = 9^x $$
1 - 本站大部分内容源于网络,经站长搜集整理。如有版权问题,请及时告知。
2 - 本站资源均为免费分享。禁止以商业形式转载,贩卖。
Key is first to identify that for $4,6$ and $9$, we only have two factors, $2$ and $3$. Hence if we divide both sides by $4^x$, we get
$$ \huge 1 + \left(\frac{3}{2} \right)^x = \left(\frac{3}{2} \right)^{2x} $$
We end up with a quadratic equation, solving for $\left(\frac{3}{2} \right)^x$ yields
$$ \huge \left(\frac{3}{2} \right)^x = \frac{1+\sqrt{5}}{2} $$
It follows that
$$ \huge x = \frac{\ln \left( \frac{1+\sqrt{5}}{2} \right) }{\ln \left( \frac32 \right)} $$