[STEP][剑桥数学入学考试][06-S1-Q5][Integration by substitution][Implicit differentiation][Partial fraction][P3] STEP

casperyc的马甲 2月前 322

  1. Use the substitution $u^2=2x+1$ to show that, for $x>4$, $$ \int \frac{3} { ( x-4 ) \sqrt {2x+1}} \, \mathrm{d} x = \ln \left( \frac{\sqrt{2x+1}-3} {\sqrt{2x+1}+3} \right) + K\,, $$ where $K$ is a constant.
  2. Show that $ \displaystyle \int_{\ln 3}^{\ln 8} \frac{2} { \mathrm{e}^x \sqrt{ \mathrm{e}^x + 1} } \, \mathrm{d} x\, = \frac 7{12} + \ln \frac23 $.
最新回复 (0)
返回