STEP/MAT
Welcome!
Mathematics
UKMT
STEP/MAT
Numeracy
Enrichment
Discussion
Login
STEP/MAT
[STEP][剑桥数学入学考试][06-S1-Q5][Integration by substitution][Implicit differentiation][Partial fraction][P3]
[STEP][剑桥数学入学考试][06-S1-Q5][Integration by substitution][Implicit differentiation][Partial fraction][P3]
STEP
casperyc的马甲
2月前
322
Use the substitution $u^2=2x+1$ to show that, for $x>4$, $$ \int \frac{3} { ( x-4 ) \sqrt {2x+1}} \, \mathrm{d} x = \ln \left( \frac{\sqrt{2x+1}-3} {\sqrt{2x+1}+3} \right) + K\,, $$ where $K$ is a constant.
Show that $ \displaystyle \int_{\ln 3}^{\ln 8} \frac{2} { \mathrm{e}^x \sqrt{ \mathrm{e}^x + 1} } \, \mathrm{d} x\, = \frac 7{12} + \ln \frac23 $.
版权声明
1 - 本站大部分内容源于网络,经站长搜集整理。如有版权问题,请及时告知。
2 - 本站资源均为免费分享。禁止以商业形式转载,贩卖。
最新回复
(
0
)
返回
发新帖