There are 13 questions in this paper.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Sixth Term Examination Paper

08-S1

Compiled by: Dr Yu 郁博士

www.CasperYC.club

Lasted updated: May 8, 2025

Section A: Pure Mathematics

- 1 (i) What does it mean to say that a number x is *irrational*?
 - (ii) Prove by contradiction statements A and B below, where p and q are real numbers.
 - **A:** If pq is irrational, then at least one of p and q is irrational.
 - **B:** If p + q is irrational, then at least one of p and q is irrational.
 - (iii) Disprove by means of a counterexample statement C below, where p and q are real numbers.
 - **C:** If p and q are irrational, then p + q is irrational.
 - (iv) If the numbers e, π, π^2, e^2 and $e\pi$ are irrational, prove that at most one of the numbers $\pi + e, \pi e, \pi^2 e^2, \pi^2 + e^2$ is rational.
- **2** The variables t and x are related by $t = x + \sqrt{x^2 + 2bx + c}$, where b and c are constants and $b^2 < c$.
 - (i) Show that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{t-x}{t+b} \;,$$

and hence integrate $\frac{1}{\sqrt{x^2+2bx+c}}$.

(ii) Verify by direct integration that your result holds also in the case $b^2=c$ if x+b>0 but that your result does not hold in the case $b^2=c$ if x+b<0.

3 (i) Prove that, if $c \geqslant a$ and $d \geqslant b$, then

$$ab + cd \geqslant bc + ad.$$
 (*)

- (ii) If $x \geqslant y$, use (*) to show that $x^2 + y^2 \geqslant 2xy$.
- (iii) If, further, $x \geqslant z$ and $y \geqslant z$, use (*) to show that $z^2 + xy \geqslant xz + yz$ and deduce that $x^2 + y^2 + z^2 \geqslant xy + yz + zx$.
- (iv) Prove that the inequality $x^2 + y^2 + z^2 \geqslant xy + yz + zx$ holds for all x, y and z.
- (v) Show similarly that the inequality

$$\frac{s}{t} + \frac{t}{r} + \frac{r}{s} + \frac{t}{s} + \frac{r}{t} + \frac{s}{r} \geqslant 6$$

holds for all positive r, s and t.

- 4 A function f(x) is said to be *convex* in the interval a < x < b if $f''(x) \ge 0$ for all x in this interval.
 - (i) Sketch on the same axes the graphs of $y = \frac{2}{3}\cos^2 x$ and $y = \sin x$ in the interval $0 \le x \le 2\pi$. The function f(x) is defined for $0 < x < 2\pi$ by

$$f(x) = e^{\frac{2}{3}\sin x}.$$

Determine the intervals in which f(x) is convex.

(ii) The function g(x) is defined for $0 < x < \frac{1}{2}\pi$ by

$$g(x) = e^{-k \tan x}.$$

If $k = \sin 2\alpha$ and $0 < \alpha < \frac{1}{4}\pi$, show that g(x) is convex in the interval $0 < x < \alpha$, and give one other interval in which g(x) is convex.

5 The polynomial p(x) is given by

$$p(x) = x^n + \sum_{r=0}^{n-1} a_r x^r,$$

where a_0, a_1, \ldots , a_{n-1} are fixed real numbers and $n \geqslant 1$.

Let M be the greatest value of |p(x)| for $|x| \leq 1$. Then Chebyshev's theorem states that $M \geq 2^{1-n}$.

- (i) Prove Chebyshev's theorem in the case n=1 and verify that Chebyshev's theorem holds in the following cases:
 - (a) $p(x) = x^2 \frac{1}{2}$;
 - **(b)** $p(x) = x^3 x$.
- (ii) Use Chebyshev's theorem to show that the curve $y=64x^5+25x^4-66x^3-24x^2+3x+1$ has at least one turning point in the interval $-1\leqslant x\leqslant 1$.
- **6** The function f is defined by

$$f(x) = \frac{e^x - 1}{e - 1}, \qquad x \geqslant 0,$$

and the function g is the inverse function to f, so that g(f(x)) = x.

- (i) Sketch f(x) and g(x) on the same axes.
- (ii) Verify, by evaluating each integral, that

$$\int_0^{\frac{1}{2}} f(x) dx + \int_0^k g(x) dx = \frac{1}{2(\sqrt{e} + 1)},$$

where
$$k = \frac{1}{\sqrt{e} + 1}$$
, and

(iii) explain this result by means of a diagram.

- 7 (i) The point P has coordinates (x,y) with respect to the origin O. By writing $x=r\cos\theta$ and $y=r\sin\theta$, or otherwise, show that, if the line OP is rotated by 60° clockwise about O, the new y-coordinate of P is $\frac{1}{2}(y-\sqrt{3}x)$.
 - (ii) What is the new y-coordinate in the case of an anti-clockwise rotation by 60° ?
 - (iii) An equilateral triangle OBC has vertices at O, (1,0) and $(\frac{1}{2},\frac{1}{2}\sqrt{3})$, respectively. The point P has coordinates (x,y). The perpendicular distance from P to the line through C and O is h_1 ; the perpendicular distance from P to the line through O and O is O0 is O1. The perpendicular distance from O2 to the line through O3 and O4 is O5.

Show that $h_1 = \frac{1}{2}|y - \sqrt{3}x|$ and find expressions for h_2 and h_3 .

- (iv) Show that $h_1 + h_2 + h_3 = \frac{1}{2}\sqrt{3}$ if and only if P lies on or in the triangle OBC.
- **8** (i) The gradient y' of a curve at a point (x, y) satisfies

$$(y')^2 - xy' + y = 0. (*)$$

By differentiating (*) with respect to x, show that either y'' = 0 or 2y' = x.

Hence show that the curve is either a straight line of the form y=mx+c, where $c=-m^2$, or the parabola $4y=x^2$.

(ii) The gradient y' of a curve at a point (x, y) satisfies

$$(x^2 - 1)(y')^2 - 2xyy' + y^2 - 1 = 0.$$

Show that the curve is either a straight line, the form of which you should specify, or a circle, the equation of which you should determine.

Section B: Mechanics

- Two identical particles P and Q, each of mass m, are attached to the ends of a diameter of a light thin circular hoop of radius a. The hoop rolls without slipping along a straight line on a horizontal table with the plane of the hoop vertical. Initially, P is in contact with the table. At time t, the hoop has rotated through an angle θ .
 - (i) Write down the position at time t of P, relative to its starting point, in cartesian coordinates, and determine its speed in terms of a, θ and $\dot{\theta}$.
 - (ii) Show that the total kinetic energy of the two particles is $2ma^2\dot{\theta}^2$.
 - (iii) Given that the only external forces on the system are gravity and the vertical reaction of the table on the hoop, show that the hoop rolls with constant speed.
- On the (flat) planet Zog, the acceleration due to gravity is g up to height h above the surface and g' at greater heights. A particle is projected from the surface at speed V and at an angle α to the surface, where $V^2 \sin^2 \alpha > 2gh$.
 - (i) Sketch, on the same axes, the trajectories in the cases g' = g and g' < g.
 - (ii) Show that the particle lands a distance d from the point of projection given by

$$d = \left(\frac{V - V'}{g} + \frac{V'}{g'}\right)V\sin 2\alpha,$$

where $V' = \sqrt{V^2 - 2gh \csc^2 \alpha}$.

- A straight uniform rod has mass m. Its ends P_1 and P_2 are attached to small light rings that are constrained to move on a rough rigid circular wire with centre O fixed in a vertical plane, and the angle P_1OP_2 is a right angle. The rod rests with P_1 lower than P_2 , and with both ends lower than P_2 . The coefficient of friction between each of the rings and the wire is μ .
 - (i) Given that the rod is in limiting equilibrium (i.e. on the point of slipping at both ends), show that

$$\tan \alpha = \frac{1 - 2\mu - \mu^2}{1 + 2\mu - \mu^2},$$

where α is the angle between P_1O and the vertical (0 < α < 45°).

(ii) Let θ be the acute angle between the rod and the horizontal.

Show that $\theta=2\lambda$, where λ is defined by $\tan\lambda=\mu$ and $0<\lambda<22.5^{\circ}$.

Section C: Probability and Statistics

12 In this question, you may use without proof the results:

$$\sum_{r=1}^{n} r = \frac{1}{2}n(n+1) \quad \text{and} \quad \sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1).$$

The independent random variables X_1 and X_2 each take values $1, 2, \dots, N$, each value being equally likely. The random variable X is defined by

$$X = \begin{cases} X_1 & \text{if } X_1 \geqslant X_2 \\ X_2 & \text{if } X_2 \geqslant X_1 \ . \end{cases}$$

- (i) Show that $P(X = r) = \frac{2r 1}{N^2}$ for r = 1, 2, ..., N.
- (ii) Find an expression for the expectation, μ , of X and show that $\mu=67.165$ in the case N=100.
- (iii) The median, m, of X is defined to be the integer such that $P(X \ge m) \ge \frac{1}{2}$ and $P(X \le m) \ge \frac{1}{2}$. Find an expression for m in terms of N and give an explicit value for m in the case N = 100.
- (iv) Show that when N is very large,

$$\frac{\mu}{m} \approx \frac{2\sqrt{2}}{3}.$$

- 13 Three married couples sit down at a round table at which there are six chairs. All of the possible seating arrangements of the six people are equally likely.
 - (i) Show that the probability that each husband sits next to his wife is $\frac{2}{15}$.
 - (ii) Find the probability that exactly two husbands sit next to their wives.
 - (iii) Find the probability that no husband sits next to his wife.