There are 14 questions in this paper. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 $\,$

Sixth Term Examination Paper

02-S2

Compiled by: Dr Yu 郁博士

www.CasperYC.club

Lasted updated: May 8, 2025

Suggestions to DrYuFromShanghai@QQ.com

Paper II, 2002

Section A: Pure Mathematics

1 (i) Show that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} \frac{1}{1 - \cos 2\theta} \, \mathrm{d}\theta = \frac{\sqrt{3}}{2} - \frac{1}{2} \, .$$

(ii) By using the substitution $x = \sin 2\theta$, or otherwise, show that

$$\int_{\sqrt{3}/2}^{1} \frac{1}{1 - \sqrt{1 - x^2}} \, \mathrm{d}x = \sqrt{3} - 1 - \frac{\pi}{6} \; .$$

$$\int_{1}^{2/\sqrt{3}} \frac{1}{y(y - \sqrt{y^2 - 1^2})} \, \mathrm{d}y \, .$$

2 (i) Show that setting $z - z^{-1} = w$ in the quartic equation

$$z^4 + 5z^3 + 4z^2 - 5z + 1 = 0$$

results in the quadratic equation $w^2 + 5w + 6 = 0$.

- (ii) Hence solve the above quartic equation.
- (iii) Solve similarly the equation

$$2z^8 - 3z^7 - 12z^6 + 12z^5 + 22z^4 - 12z^3 - 12z^2 + 3z + 2 = 0.$$

/step

Paper II, 2002

4

3 The *n*th Fermat number, F_n , is defined by

$$F_n = 2^{2^n} + 1$$
, $n = 0, 1, 2, \dots$,

where $2^{2^n} \mbox{ means } 2$ raised to the power $2^n\,.$

- (i) Calculate F_0 , F_1 , F_2 and F_3 .
- (ii) Show that, for k = 1, k = 2 and k = 3,

$$F_0 F_1 \dots F_{k-1} = F_k - 2 . \tag{(*)}$$

- (iii) Prove, by induction, or otherwise, that (*) holds for all $k \ge 1$.
- (iv) Deduce that no two Fermat numbers have a common factor greater than 1.
- (v) Hence show that there are infinitely many prime numbers.

Give a sketch to show that, if $\mathrm{f}(x)>0$ for p < x < q, then $\int_p^q \mathrm{f}(x) \mathrm{d}x>0$.

- (i) By considering $f(x) = ax^2 bx + c$ show that, if a > 0 and $b^2 < 4ac$, then 3b < 2a + 6c.
- (ii) By considering $f(x) = a \sin^2 x b \sin x + c$ show that, if a > 0 and $b^2 < 4ac$, then $4b < (a + 2c)\pi$.
- (iii) Show that, if a > 0, $b^2 < 4ac$ and q > p > 0, then

$$b\ln(q/p) < a\left(\frac{1}{p} - \frac{1}{q}\right) + c(q-p)$$
.

5 The numbers x_n , where $n = 0, 1, 2, \ldots$, satisfy

$$x_{n+1} = kx_n(1 - x_n) \, .$$

- (i) Prove that, if 0 < k < 4 and $0 < x_0 < 1$, then $0 < x_n < 1$ for all n.
- (ii) Given that $x_0 = x_1 = x_2 = \cdots = a$, with $a \neq 0$ and $a \neq 1$, find k in terms of a.
- (iii) Given instead that $x_0 = x_2 = x_4 = \cdots = a$, with $a \neq 0$ and $a \neq 1$, show that $ab^3 b^2 + (1 a) = 0$, where b = k(1 a). Given, in addition, that $x_1 \neq a$, find the possible values of k in terms of a.

www.CasperYC.club/step

- **6** The lines l_1 , l_2 and l_3 lie in an inclined plane P and pass through a common point A. The line l_2 is a line of greatest slope in P. The line l_1 is perpendicular to l_3 and makes an acute angle α with l_2 . The angles between the horizontal and l_1 , l_2 and l_3 are $\pi/6$, β and $\pi/4$, respectively.
 - (i) Show that $\cos \alpha \sin \beta = \frac{1}{2}$ and find the value of $\sin \alpha \sin \beta$.
 - (ii) Deduce that $\beta = \pi/3$.
 - (iii) The lines l_1 and l_3 are rotated in P about A so that l_1 and l_3 remain perpendicular to each other. The new acute angle between l_1 and l_2 is θ . The new angles which l_1 and l_3 make with the horizontal are ϕ and 2ϕ , respectively. Show that

$$\tan^2 \theta = \frac{3 + \sqrt{13}}{2} \, .$$

- 7 In 3-dimensional space, the lines m_1 and m_2 pass through the origin and have directions $\mathbf{i} + \mathbf{j}$ and $\mathbf{i} + \mathbf{k}$, respectively. Find the directions of the two lines m_3 and m_4 that pass through the origin and make angles of $\pi/4$ with both m_1 and m_2 . Find also the cosine of the acute angle between m_3 and m_4 . The points A and B lie on m_1 and m_2 respectively, and are each at distance $\lambda\sqrt{2}$ units from O. The points P and Q lie on m_3 and m_4 respectively, and are each at distance 1 unit from O. If all the coordinates (with respect to axes \mathbf{i} , \mathbf{j} and \mathbf{k}) of A, B, P and Q are non-negative, prove that:
 - (i) there are only two values of λ for which AQ is perpendicular to BP;
 - (ii) there are no non-zero values of λ for which AQ and BP intersect.
- **8** Find *y* in terms of *x*, given that:

for
$$x < 0$$
, $\frac{\mathrm{d}y}{\mathrm{d}x} = -y$ and $y = a$ when $x = -1$;
for $x > 0$, $\frac{\mathrm{d}y}{\mathrm{d}x} = y$ and $y = b$ when $x = 1$.

- (i) Sketch a solution curve.
- (ii) Determine the condition on a and b for the solution curve to be continuous (that is, for there to be no 'jump' in the value of y) at x = 0.
- (iii) Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = |\mathrm{e}^x - 1|\,y$$

given that $y = e^e$ when x = 1 and that y is continuous at x = 0. Write down the following limits:

(i)
$$\lim_{x \to +\infty} y \exp(-e^x)$$
; (ii) $\lim_{x \to -\infty} y e^{-x}$.

www.CasperYC.club/step

Section B: Mechanics

- **9** A particle is projected from a point O on a horizontal plane with speed V and at an angle of elevation α . The vertical plane in which the motion takes place is perpendicular to two vertical walls, both of height h, at distances a and b from O.
 - (i) Given that the particle just passes over the walls, find $\tan \alpha$ in terms of a, b and h and show that

$$\frac{2V^2}{g} = \frac{ab}{h} + \frac{(a+b)^2h}{ab} \; .$$

(ii) The heights of the walls are now increased by the same small positive amount δh . A second particle is projected so that it just passes over both walls, and the new angle and speed of projection are $\alpha + \delta \alpha$ and $V + \delta V$, respectively.

Show that

$$\sec^2 \alpha \,\delta \alpha \approx \frac{a+b}{ab} \,\delta h \;,$$

and deduce that $\delta\alpha>0$.

- (iii) Show also that δV is positive if h > ab/(a+b) and negative if h < ab/(a+b).
- 10 (i) A competitor in a Marathon of $42\frac{3}{8}$ km runs the first t hours of the race at a constant speed of 13 km h⁻¹ and the remainder at a constant speed of 14 + 2t/T km h⁻¹, where T hours is her time for the race. Show that the minimum possible value of T over all possible values of t is 3.
 - (ii) The speed of another competitor decreases linearly with respect to time from 16 km h⁻¹ at the start of the race. If both of these competitors have a run time of 3 hours, find the maximum distance between them at any stage of the race.
- 11 (i) A rigid straight beam AB has length l and weight W. Its weight per unit length at a distance x from B is $\alpha W l^{-1} (x/l)^{\alpha-1}$, where α is a positive constant. Show that the centre of mass of the beam is at a distance $\alpha l/(\alpha + 1)$ from B.
 - (ii) The beam is placed with the end A on a rough horizontal floor and the end B resting against a rough vertical wall. The beam is in a vertical plane at right angles to the plane of the wall and makes an angle of θ with the floor. The coefficient of friction between the floor and the beam is μ and the coefficient of friction between the wall and the beam is also μ . Show that, if the equilibrium is limiting at both A and B, then

$$\tan \theta = \frac{1 - \alpha \mu^2}{(1 + \alpha)\mu}$$

(iii) Given that $\alpha = 3/2$ and given also that the beam slides for any $\theta < \pi/4$ find the greatest possible value of μ .

Section C: Probability and Statistics

- 12 On K consecutive days each of L identical coins is thrown M times. For each coin, the probability of throwing a head in any one throw is p (where 0).
 - (i) Show that the probability that on exactly k of these days more than l of the coins will each produce fewer than m heads can be approximated by

$$\binom{K}{k}q^k(1-q)^{K-k},$$

where

$$q = \Phi\left(\frac{2h - 2l - 1}{2\sqrt{h}}\right), \ h = L\Phi\left(\frac{2m - 1 - 2Mp}{2\sqrt{Mp(1 - p)}}\right)$$

and $\Phi(.)$ is the cumulative distribution function of a standard normal variate.

- (ii) Would you expect this approximation to be accurate in the case K = 7, k = 2, L = 500, l = 4, M = 100, m = 48 and p = 0.6?
- **13** Let F(x) be the cumulative distribution function of a random variable X, which satisfies F(a) = 0 and F(b) = 1, where a > 0. Let

$$\mathbf{G}(y) = \frac{\mathbf{F}(y)}{2 - \mathbf{F}(y)}$$

- (i) Show that G(a) = 0, G(b) = 1 and that $G'(y) \ge 0$.
- (ii) Show also that

$$\frac{1}{2} \leqslant \frac{2}{(2 - \mathcal{F}(y))^2} \leqslant 2 \; .$$

(iii) The random variable Y has cumulative distribution function G(y). Show that

$$\frac{1}{2}\operatorname{E}(X) \leqslant \operatorname{E}(Y) \leqslant 2\operatorname{E}(X) ,$$

and that

$$\operatorname{Var}(Y) \leq 2\operatorname{Var}(X) + \frac{7}{4} (\operatorname{E}(X))^2$$
.

- 14 A densely populated circular island is divided into N concentric regions R_1, R_2, \ldots, R_N , such that the inner and outer radii of R_n are n 1 km and n km, respectively. The average number of road accidents that occur in any one day in R_n is 2 n/N, independently of the number of accidents in any other region. Each day an observer selects a region at random, with a probability that is proportional to the area of the region, and records the number of road accidents, X, that occur in it.
 - (i) Show that, in the long term, the average number of recorded accidents per day will be

$$2 - \frac{1}{6} \left(1 + \frac{1}{N} \right) \left(4 - \frac{1}{N} \right) \ .$$

[Note:
$$\sum_{n=1}^{N} n^2 = \frac{1}{6}N(N+1)(2N+1)$$
.]

(ii) Show also that

$$P(X = k) = \frac{e^{-2}N^{-k-2}}{k!} \sum_{n=1}^{N} (2n-1)(2N-n)^k e^{n/N}$$

(iii) Suppose now that N = 3 and that, on a particular day, two accidents were recorded. Show that the probability that R_2 had been selected is

$$\frac{48}{48 + 45 e^{1/3} + 25 e^{-1/3}} \; .$$