1

The diagram shows three sets of equally－spaced parallel lines．
Given that $\overrightarrow{A C}=\mathbf{p}$ and that $\overrightarrow{A D}=\mathbf{q}$ ，express the following vectors in terms of \mathbf{p} and \mathbf{q} ．
a $\overrightarrow{C A}$
b $\overrightarrow{A G}$
c $\overrightarrow{A B}$
d $\overrightarrow{D F}$
e $\overrightarrow{H E}$
f $\overrightarrow{A F}$
g $\overrightarrow{A H}$
h $\overrightarrow{D C}$
i $\overrightarrow{C G}$
j $\overrightarrow{I A}$
k $\overrightarrow{E C}$
$1 \overrightarrow{I B}$

In the quadrilateral shown， $\overrightarrow{O A}=\mathbf{u}, \overrightarrow{A B}=\mathbf{v}$ and $\overrightarrow{O C}=\mathbf{w}$ ．
Find expressions in terms of \mathbf{u}, \mathbf{v} and \mathbf{w} for
a $\overrightarrow{O B}$
b $\overrightarrow{A C}$
c $\overrightarrow{C B}$

The diagram shows a cuboid．
Given that $\overrightarrow{A B}=\mathbf{p}, \overrightarrow{A D}=\mathbf{q}$ and $\overrightarrow{A E}=\mathbf{r}$ ，find expressions in terms of \mathbf{p}, \mathbf{q} and \mathbf{r} for
a $\overrightarrow{B C}$
b $\overrightarrow{A F}$
c $\overrightarrow{D E}$
d $\overrightarrow{A G}$
e $\overrightarrow{G B}$
f $\overrightarrow{B H}$

4

The diagram shows parallelogram ORST．
Given that $\overrightarrow{O R}=\mathbf{a}+2 \mathbf{b}$ and that $\overrightarrow{O T}=\mathbf{a}-2 \mathbf{b}$ ，
a find expressions in terms of \mathbf{a} and \mathbf{b} for
i $\overrightarrow{O S}$
ii $\overrightarrow{T R}$

Given also that $\overrightarrow{O A}=\mathbf{a}$ and that $\overrightarrow{O B}=\mathbf{b}$ ，
b copy the diagram and show the positions of the points A and B ．

5

The diagram shows triangle $O A B$ in which $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$ ．
The points C and D are the mid－points of $O A$ and $A B$ respectively．
a Find and simplify expressions in terms of \mathbf{a} and \mathbf{b} for
i $\overrightarrow{O C}$
ii $\overrightarrow{A B}$
iii $\overrightarrow{A D}$
iv $\overrightarrow{O D}$
v $\overrightarrow{C D}$
b Explain what your expression for $\overrightarrow{C D}$ tells you about $\overrightarrow{O B}$ and $\overrightarrow{C D}$ ．
6 Given that vectors \mathbf{p} and \mathbf{q} are not parallel，state whether or not each of the following pairs of vectors are parallel．
a $2 \mathbf{p}$ and $3 \mathbf{p}$
b $(\mathbf{p}+2 \mathbf{q})$ and $(2 \mathbf{p}-4 \mathbf{q})$
c $(3 \mathbf{p}-\mathbf{q})$ and $\left(\mathbf{p}-\frac{1}{3} \mathbf{q}\right)$
d $(\mathbf{p}-2 \mathbf{q})$ and $(4 \mathbf{q}-2 \mathbf{p})$
e $\left(\frac{3}{4} \mathbf{p}+\mathbf{q}\right)$ and $(6 \mathbf{p}+8 \mathbf{q})$
f $(2 \mathbf{q}-3 \mathbf{p})$ and $\left(\frac{3}{2} \mathbf{q}-\mathbf{p}\right)$

7 The points O, A, B and C are such that $\overrightarrow{O A}=4 \mathbf{m}, \overrightarrow{O B}=4 \mathbf{m}+2 \mathbf{n}$ and $\overrightarrow{O C}=2 \mathbf{m}+3 \mathbf{n}$ ，where \mathbf{m} and \mathbf{n} are non－parallel vectors．
a Find an expression for $\overrightarrow{B C}$ in terms of \mathbf{m} and \mathbf{n} ．
The point M is the mid－point of $O C$ ．
b Show that $A M$ is parallel to $B C$ ．
8 The points O, A, B and C are such that $\overrightarrow{O A}=6 \mathbf{u}-4 \mathbf{v}, \overrightarrow{O B}=3 \mathbf{u}-\mathbf{v}$ and $\overrightarrow{O C}=\mathbf{v}-3 \mathbf{u}$ ，where \mathbf{u} and \mathbf{v} are non－parallel vectors．
The point M is the mid－point of $O A$ and the point N is the point on $A B$ such that $A N: N B=1: 2$
a Find $\overrightarrow{O M}$ and $\overrightarrow{O N}$ ．
b Prove that C, M and N are collinear．
9 Given that vectors \mathbf{p} and \mathbf{q} are not parallel，find the values of the constants a and b such that
a $a \mathbf{p}+3 \mathbf{q}=5 \mathbf{p}+b \mathbf{q}$
b $(2 \mathbf{p}+a \mathbf{q})+(b \mathbf{p}-4 \mathbf{q})=\mathbf{0}$
c $4 a \mathbf{q}-\mathbf{p}=b \mathbf{p}-2 \mathbf{q}$
d $(2 a \mathbf{p}+b \mathbf{q})-(a \mathbf{q}-6 \mathbf{p})=\mathbf{0}$

10

The diagram shows triangle $O A B$ in which $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$ ．
The point C is the mid－point of $O A$ and the point D is the mid－point of $B C$ ．
a Find an expression for $\overrightarrow{O D}$ in terms of \mathbf{a} and \mathbf{b} ．
b Show that if the point E lies on $A B$ then $\overrightarrow{O E}$ can be written in the form $\mathbf{a}+k(\mathbf{b}-\mathbf{a})$ ，where k is a constant．
Given also that $O D$ produced meets $A B$ at E ，
c find $\overrightarrow{O E}$ ，
d show that $A E: E B=2: 1$

1 The points A, B and C have coordinates $(6,1),(2,3)$ and $(-4,3)$ respectively and O is the origin． Find，in terms of \mathbf{i} and \mathbf{j} ，the vectors
a $\overrightarrow{O A}$
b $\overrightarrow{A B}$
c $\overrightarrow{B C}$
d $\overrightarrow{C A}$

2 Given that $\mathbf{p}=\mathbf{i}-3 \mathbf{j}$ and $\mathbf{q}=4 \mathbf{i}+2 \mathbf{j}$ ，find expressions in terms of \mathbf{i} and \mathbf{j} for
a 4 p
b $\mathbf{q}-\mathbf{p}$
c $2 \mathbf{p}+3 \mathbf{q}$
d $4 \mathbf{p}-2 q$

3 Given that $\mathbf{p}=\binom{3}{-4}$ and $\mathbf{q}=\binom{1}{2}$ ，find
a $|\mathbf{p}|$
b $|2 \mathbf{q}|$
c $|\mathbf{p}+2 \mathbf{q}|$
d $|3 \mathbf{q}-2 \mathbf{p}|$

4 Given that $\mathbf{p}=2 \mathbf{i}+\mathbf{j}$ and $\mathbf{q}=\mathbf{i}-3 \mathbf{j}$ ，find，in degrees to 1 decimal place，the angle made with the vector \mathbf{i} by the vector
a \mathbf{p}
b \mathbf{q}
c $5 \mathbf{p}+\mathbf{q}$
d $\mathbf{p}-3 \mathbf{q}$

5 Find a unit vector in the direction
a $\binom{4}{3}$
b $\binom{7}{-24}$
c $\binom{-1}{1}$
d $\binom{2}{4}$

6 Find a vector
a of magnitude 26 in the direction $5 \mathbf{i}+12 \mathbf{j}$ ，
b of magnitude 15 in the direction $-6 \mathbf{i}-8 \mathbf{j}$ ，
c of magnitude 5 in the direction $2 \mathbf{i}-4 \mathbf{j}$ ．
7 Given that $\mathbf{m}=2 \mathbf{i}+\lambda \mathbf{j}$ and $\mathbf{n}=\mu \mathbf{i}-5 \mathbf{j}$ ，find the values of λ and μ such that
a $\mathbf{m}+\mathbf{n}=3 \mathbf{i}-\mathbf{j}$
b $2 \mathbf{m}-\mathbf{n}=-3 \mathbf{i}+8 \mathbf{j}$

8 Given that $\mathbf{r}=6 \mathbf{i}+c \mathbf{j}$ ，where c is a positive constant，find the value of c such that
a \mathbf{r} is parallel to the vector $2 \mathbf{i}+\mathbf{j}$
b \mathbf{r} is parallel to the vector $-9 \mathbf{i}-6 \mathbf{j}$
c $|\mathbf{r}|=10$
d $|\mathbf{r}|=3 \sqrt{5}$

9 Given that $\mathbf{p}=\mathbf{i}+3 \mathbf{j}$ and $\mathbf{q}=4 \mathbf{i}-2 \mathbf{j}$ ，
a find the values of a and b such that $a \mathbf{p}+b \mathbf{q}=-5 \mathbf{i}+13 \mathbf{j}$ ，
b find the value of c such that $c \mathbf{p}+\mathbf{q}$ is parallel to the vector \mathbf{j} ，
c find the value of d such that $\mathbf{p}+d \mathbf{q}$ is parallel to the vector $3 \mathbf{i}-\mathbf{j}$ ．
10 Relative to a fixed origin O ，the points A and B have position vectors $\binom{3}{6}$ and $\binom{-5}{2}$ respectively． Find
a the vector $\overrightarrow{A B}$ ，
b $|\overrightarrow{A B}|$ ，
c the position vector of the mid－point of $A B$ ，
d the position vector of the point C such that $O A B C$ is a parallelogram．

11 Given the coordinates of the points A and B ，find the length $A B$ in each case．
a $A(4,0,9), B(2,-3,3)$
b $A(11,-3,5), B(7,-1,3)$

12 Find the magnitude of each vector．
a $4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$
b $\mathbf{i}+\mathbf{j}+\mathbf{k}$
c $-8 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$
d $3 \mathbf{i}-5 \mathbf{j}+\mathbf{k}$

13 Find
a a unit vector in the direction $5 \mathbf{i}-2 \mathbf{j}+14 \mathbf{k}$ ，
b a vector of magnitude 10 in the direction $2 \mathbf{i}+11 \mathbf{j}-10 \mathbf{k}$ ，
c a vector of magnitude 20 in the direction $-5 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$ ．
14 Given that $\mathbf{r}=\lambda \mathbf{i}+12 \mathbf{j}-4 \mathbf{k}$ ，find the two possible values of λ such that $|\mathbf{r}|=14$ ．
15 Given that $\mathbf{p}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right), \mathbf{q}=\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-2 \\ 5 \\ -3\end{array}\right)$ ，find as column vectors，
a $\mathbf{p}+2 \mathbf{q}$
b $\mathbf{p}-\mathbf{r}$
c $\mathbf{p}+\mathbf{q}+\mathbf{r}$
d $2 \mathbf{p}-3 \mathbf{q}+\mathbf{r}$

16 Given that $\mathbf{r}=-2 \mathbf{i}+\lambda \mathbf{j}+\mu \mathbf{k}$ ，find the values of λ and μ such that
a \mathbf{r} is parallel to $4 \mathbf{i}+2 \mathbf{j}-8 \mathbf{k}$
b \mathbf{r} is parallel to $-5 \mathbf{i}+20 \mathbf{j}-10 \mathbf{k}$

17 Given that $\mathbf{p}=\mathbf{i}-2 \mathbf{j}+4 \mathbf{k}, \mathbf{q}=-\mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{r}=2 \mathbf{i}-4 \mathbf{j}-7 \mathbf{k}$ ，
a find $|2 \mathbf{p}-\mathbf{q}|$ ，
b find the value of k such that $\mathbf{p}+k \mathbf{q}$ is parallel to \mathbf{r} ．
18 Relative to a fixed origin O ，the points A, B and C have position vectors（ $-2 \mathbf{i}+7 \mathbf{j}+4 \mathbf{k}$ ）， $(-4 \mathbf{i}+\mathbf{j}+8 \mathbf{k})$ and $(6 \mathbf{i}-5 \mathbf{j})$ respectively．
a Find the position vector of the mid－point of $A B$ ．
b Find the position vector of the point D on $A C$ such that $A D: D C=3: 1$
19 Given that $\mathbf{r}=\lambda \mathbf{i}-2 \lambda \mathbf{j}+\mu \mathbf{k}$ ，and that \mathbf{r} is parallel to the vector $(2 \mathbf{i}-4 \mathbf{j}-3 \mathbf{k})$ ，
a show that $3 \lambda+2 \mu=0$ ．
Given also that $|\mathbf{r}|=2 \sqrt{29}$ and that $\mu>0$ ，
b find the values of λ and μ ．
20 Relative to a fixed origin O ，the points A, B and C have position vectors $\left(\begin{array}{c}6 \\ -2 \\ -4\end{array}\right),\left(\begin{array}{c}12 \\ -7 \\ -4\end{array}\right)$ and $\left(\begin{array}{c}6 \\ 1 \\ -8\end{array}\right)$ respectively．
a Find the position vector of the point M ，the mid－point of $B C$ ．
b Show that O, A and M are collinear．
21 The position vector of a model aircraft at time t seconds is $(9-t) \mathbf{i}+(1+2 t) \mathbf{j}+(5-t) \mathbf{k}$ ，relative to a fixed origin O ．One unit on each coordinate axis represents 1 metre．
a Find an expression for d^{2} in terms of t ，where d metres is the distance of the aircraft from O ．
b Find the value of t when the aircraft is closest to O and hence，the least distance of the aircraft from O ．

1 Sketch each line on a separate diagram given its vector equation．
a $\mathbf{r}=2 \mathbf{i}+s \mathbf{j}$
b $\quad \mathbf{r}=s(\mathbf{i}+\mathbf{j})$
c $\quad \mathbf{r}=\mathbf{i}+4 \mathbf{j}+s(\mathbf{i}+2 \mathbf{j})$
d $\mathbf{r}=3 \mathbf{j}+s(3 \mathbf{i}-\mathbf{j})$
e $\quad \mathbf{r}=-4 \mathbf{i}+2 \mathbf{j}+s(2 \mathbf{i}-\mathbf{j})$
f $\quad \mathbf{r}=(2 s+1) \mathbf{i}+(3 s-2) \mathbf{j}$

2 Write down a vector equation of the straight line
a parallel to the vector $(3 \mathbf{i}-2 \mathbf{j})$ which passes through the point with position vector $(-\mathbf{i}+\mathbf{j})$ ，
b parallel to the x－axis which passes through the point with coordinates $(0,4)$ ，
c parallel to the line $\mathbf{r}=2 \mathbf{i}+t(\mathbf{i}+5 \mathbf{j})$ which passes through the point with coordinates $(3,-1)$ ．
3 Find a vector equation of the straight line which passes through the points with position vectors
a $\binom{1}{0}$ and $\binom{3}{1}$
b $\binom{-3}{4}$ and $\binom{-1}{1}$
c $\binom{2}{-2}$ and $\binom{-2}{3}$

4 Find the value of the constant c such that line with vector equation $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+\lambda(c \mathbf{i}+2 \mathbf{j})$ a passes through the point $(0,5)$ ，
b is parallel to the line $\mathbf{r}=-2 \mathbf{i}+4 \mathbf{j}+\mu(6 \mathbf{i}+3 \mathbf{j})$ ．
5 Find a vector equation for each line given its cartesian equation．
a $x=-1$
b $y=2 x$
c $y=3 x+1$
d $y=\frac{3}{4} x-2$
e $y=5-\frac{1}{2} x$
f $x-4 y+8=0$

6 A line has the vector equation $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\lambda(3 \mathbf{i}+2 \mathbf{j})$ ．
a Write down parametric equations for the line．
b Hence find the cartesian equation of the line in the form $a x+b y+c=0$ ，where a, b and c are integers．

7 Find a cartesian equation for each line in the form $a x+b y+c=0$ ，where a, b and c are integers．
a $\quad \mathbf{r}=3 \mathbf{i}+\lambda(\mathbf{i}+2 \mathbf{j})$
b $\mathbf{r}=\mathbf{i}+4 \mathbf{j}+\lambda(3 \mathbf{i}+\mathbf{j})$
c $\quad \mathbf{r}=2 \mathbf{j}+\lambda(4 \mathbf{i}-\mathbf{j})$
d $\mathbf{r}=-2 \mathbf{i}+\mathbf{j}+\lambda(5 \mathbf{i}+2 \mathbf{j})$
e $\mathbf{r}=2 \mathbf{i}-3 \mathbf{j}+\lambda(-3 \mathbf{i}+4 \mathbf{j})$
f $\mathbf{r}=(\lambda+3) \mathbf{i}+(-2 \lambda-1) \mathbf{j}$

8 For each pair of lines，determine with reasons whether they are identical，parallel but not identical or not parallel．
a $\quad \mathbf{r}=\binom{1}{2}+s\binom{3}{-1}$
b $\mathbf{r}=\binom{-1}{2}+s\binom{1}{4}$
c $\quad \mathbf{r}=\binom{2}{-5}+s\binom{2}{4}$
$\mathbf{r}=\binom{-2}{3}+t\binom{-6}{2}$
$\mathbf{r}=\binom{-2}{4}+t\binom{4}{1}$
$\mathbf{r}=\binom{-1}{1}+t\binom{3}{6}$

9 Find the position vector of the point of intersection of each pair of lines．
a $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\lambda \mathbf{i}$
$\mathbf{r}=2 \mathbf{i}+\mathbf{j}+\mu(3 \mathbf{i}+\mathbf{j})$
b $\mathbf{r}=4 \mathbf{i}+\mathbf{j}+\lambda(-\mathbf{i}+\mathbf{j})$
$\mathbf{r}=5 \mathbf{i}-2 \mathbf{j}+\mu(2 \mathbf{i}-3 \mathbf{j})$
c $\quad \mathbf{r}=\mathbf{j}+\lambda(2 \mathbf{i}-\mathbf{j})$
$\mathbf{r}=2 \mathbf{i}+10 \mathbf{j}+\mu(-\mathbf{i}+3 \mathbf{j})$
d $\mathbf{r}=-\mathbf{i}+5 \mathbf{j}+\lambda(-4 \mathbf{i}+6 \mathbf{j})$
$\mathbf{r}=2 \mathbf{i}-2 \mathbf{j}+\mu(-\mathbf{i}+2 \mathbf{j})$
e $\begin{aligned} & \mathbf{r}=-2 \mathbf{i}+11 \mathbf{j}+\lambda(-3 \mathbf{i}+4 \mathbf{j}) \\ & \mathbf{r}=-3 \mathbf{i}-7 \mathbf{j}+\mu(5 \mathbf{i}+3 \mathbf{j})\end{aligned}$
f $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\lambda(3 \mathbf{i}+2 \mathbf{j})$
$\mathbf{r}=-3 \mathbf{i}-7 \mathbf{j}+\mu(5 \mathbf{i}+3 \mathbf{j}) \quad \mathbf{r}=3 \mathbf{i}+5 \mathbf{j}+\mu(\mathbf{i}+4 \mathbf{j})$

10 Write down a vector equation of the straight line
a parallel to the vector $(\mathbf{i}+3 \mathbf{j}-2 \mathbf{k})$ which passes through the point with position vector $(4 \mathbf{i}+\mathbf{k})$ ，
b perpendicular to the $x y$－plane which passes through the point with coordinates $(2,1,0)$ ，
c parallel to the line $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+t(2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k})$ which passes through the point with coordinates $(-1,4,2)$ ．

11 The points A and B have position vectors（ $5 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$ ）and（ $6 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ ）respectively．
a Find $\overrightarrow{A B}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k} ．
b Write down a vector equation of the straight line l which passes through A and B ．
c Show that l passes through the point with coordinates $(3,9,-8)$ ．
12 Find a vector equation of the straight line which passes through the points with position vectors
a $(\mathbf{i}+3 \mathbf{j}+4 \mathbf{k})$ and $(5 \mathbf{i}+4 \mathbf{j}+6 \mathbf{k})$
b $(3 \mathbf{i}-2 \mathbf{k})$ and $(\mathbf{i}+5 \mathbf{j}+2 \mathbf{k})$
c $\mathbf{0}$ and $(6 \mathbf{i}-\mathbf{j}+2 \mathbf{k})$
d $(-\mathbf{i}-2 \mathbf{j}+3 \mathbf{k})$ and $(4 \mathbf{i}-7 \mathbf{j}+\mathbf{k})$

13 Find the value of the constants a and b such that line $\mathbf{r}=3 \mathbf{i}-5 \mathbf{j}+\mathbf{k}+\lambda(2 \mathbf{i}+a \mathbf{j}+b \mathbf{k})$
a passes through the point $(9,-2,-8)$ ，
b is parallel to the line $\mathbf{r}=4 \mathbf{j}-2 \mathbf{k}+\mu(8 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})$ ．
14 Find cartesian equations for each of the following lines．
a $\quad \mathbf{r}=\left(\begin{array}{l}2 \\ 3 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 5 \\ 2\end{array}\right)$
b $\mathbf{r}=\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 6 \\ 3\end{array}\right)$
c $\quad \mathbf{r}=\left(\begin{array}{c}-1 \\ 5 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -2 \\ -1\end{array}\right)$

15 Find a vector equation for each line given its cartesian equations．
a $\frac{x-1}{3}=\frac{y+4}{2}=z-5$
b $\frac{x}{4}=\frac{y-1}{-2}=\frac{z+7}{3}$
c $\frac{x+5}{-4}=y+3=z$

16 Show that the lines with vector equations $\mathbf{r}=4 \mathbf{i}+3 \mathbf{k}+s(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$ and $\mathbf{r}=7 \mathbf{i}+2 \mathbf{j}-5 \mathbf{k}+t(-3 \mathbf{i}+2 \mathbf{j}+\mathbf{k})$ intersect，and find the coordinates of their point of intersection．

17 Show that the lines with vector equations $\mathbf{r}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+3 \mathbf{k})$ and $\mathbf{r}=\mathbf{i}+4 \mathbf{j}+3 \mathbf{k}+\mu(\mathbf{i}-2 \mathbf{j}+\mathbf{k})$ are skew．

18 For each pair of lines，find the position vector of their point of intersection or，if they do not intersect，state whether they are parallel or skew．
a $\quad \mathbf{r}=\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}3 \\ 2 \\ -4\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$
b $\mathbf{r}=\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -3\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}6 \\ -2 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}-4 \\ 2 \\ 6\end{array}\right)$
$\mathbf{c} \quad \mathbf{r}=\left(\begin{array}{c}8 \\ 2 \\ -4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-2 \\ 2 \\ 8\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -3 \\ -4\end{array}\right)$
d $\mathbf{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}7 \\ -6 \\ -5\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$
e $\mathbf{r}=\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 5 \\ -3\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}5 \\ -3 \\ -4\end{array}\right)$
f $\mathbf{r}=\left(\begin{array}{c}0 \\ 7 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -4 \\ 8\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-12 \\ -1 \\ 11\end{array}\right)+\mu\left(\begin{array}{c}5 \\ 2 \\ -3\end{array}\right)$

1 Calculate
a $(\mathbf{i}+2 \mathbf{j}) \cdot(3 \mathbf{i}+\mathbf{j})$
b $(4 \mathbf{i}-\mathbf{j}) \cdot(3 \mathbf{i}+5 \mathbf{j})$
c $(\mathbf{i}-2 \mathbf{j}) \cdot(-5 \mathbf{i}-2 \mathbf{j})$

2 Show that the vectors $(\mathbf{i}+4 \mathbf{j})$ and $(8 \mathbf{i}-2 \mathbf{j})$ are perpendicular．
3 Find in each case the value of the constant c for which the vectors \mathbf{u} and \mathbf{v} are perpendicular．
a $\mathbf{u}=\binom{3}{-1}, \quad \mathbf{v}=\binom{c}{3}$
b $\mathbf{u}=\binom{2}{1}, \quad \mathbf{v}=\binom{3}{c}$
c $\mathbf{u}=\binom{2}{-5}, \quad \mathbf{v}=\binom{c}{-4}$

4 Find，in degrees to 1 decimal place，the angle between the vectors
a $(4 \mathbf{i}-3 \mathbf{j})$ and $(8 \mathbf{i}+6 \mathbf{j})$
b $(7 \mathbf{i}+\mathbf{j})$ and $(2 \mathbf{i}+6 \mathbf{j})$
c $(4 \mathbf{i}+2 \mathbf{j})$ and $(-5 \mathbf{i}+2 \mathbf{j})$

5 Relative to a fixed origin O ，the points A, B and C have position vectors $(9 \mathbf{i}+\mathbf{j}),(3 \mathbf{i}-\mathbf{j})$ and $(5 \mathbf{i}-2 \mathbf{j})$ respectively．Show that $\angle A B C=45^{\circ}$ ．

6 Calculate
$\mathbf{a} \quad(\mathbf{i}+2 \mathbf{j}+4 \mathbf{k}) \cdot(3 \mathbf{i}+\mathbf{j}+2 \mathbf{k})$
b $(6 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) .(\mathbf{i}-3 \mathbf{j}-\mathbf{k})$
c $(-5 \mathbf{i}+2 \mathbf{k}) .(\mathbf{i}+4 \mathbf{j}-3 \mathbf{k})$
d $(3 \mathbf{i}+2 \mathbf{j}-8 \mathbf{k}) \cdot(-\mathbf{i}+11 \mathbf{j}-4 \mathbf{k})$
e $(3 \mathbf{i}-7 \mathbf{j}+\mathbf{k}) .(9 \mathbf{i}+4 \mathbf{j}-\mathbf{k})$
f $(7 \mathbf{i}-3 \mathbf{j}) \cdot(-3 \mathbf{j}+6 \mathbf{k})$

7 Given that $\mathbf{p}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, \mathbf{q}=\mathbf{i}+5 \mathbf{j}-\mathbf{k}$ and $\mathbf{r}=6 \mathbf{i}-2 \mathbf{j}-3 \mathbf{k}$ ，
a find the value of $\mathbf{p . q}$ ，
b find the value of p．r，
c verify that $\mathbf{p} .(\mathbf{q}+\mathbf{r})=\mathbf{p} . \mathbf{q}+\mathbf{p} . \mathbf{r}$
8 Simplify
a $\mathbf{p} .(\mathbf{q}+\mathbf{r})+\mathbf{p} .(\mathbf{q}-\mathbf{r})$
b $\mathbf{p} \cdot(\mathbf{q}+\mathbf{r})+\mathbf{q} \cdot(\mathbf{r}-\mathbf{p})$

9 Show that the vectors（ $5 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ ）and（ $3 \mathbf{i}+\mathbf{j}-6 \mathbf{k}$ ）are perpendicular．
10 Relative to a fixed origin O ，the points A, B and C have position vectors（ $3 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}$ ）， $(\mathbf{i}+5 \mathbf{j}-2 \mathbf{k})$ and $(8 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$ respectively．Show that $\angle A B C=90^{\circ}$ ．

11 Find in each case the value or values of the constant c for which the vectors \mathbf{u} and \mathbf{v} are perpendicular．
a $\quad \mathbf{u}=(2 \mathbf{i}+3 \mathbf{j}+\mathbf{k})$ ，
$\mathbf{v}=(c \mathbf{i}-3 \mathbf{j}+\mathbf{k})$
b $\quad \mathbf{u}=(-5 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}), \quad \mathbf{v}=(c \mathbf{i}-\mathbf{j}+3 c \mathbf{k})$
c $\mathbf{u}=(c \mathbf{i}-2 \mathbf{j}+8 \mathbf{k})$ ，
$\mathbf{v}=(c \mathbf{i}+c \mathbf{j}-3 \mathbf{k})$
d $\mathbf{u}=(3 c \mathbf{i}+2 \mathbf{j}+c \mathbf{k}), \quad \mathbf{v}=(5 \mathbf{i}-4 \mathbf{j}+2 c \mathbf{k})$

12 Find the exact value of the cosine of the angle between the vectors
a $\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}8 \\ 1 \\ -4\end{array}\right)$
b $\left(\begin{array}{c}4 \\ 1 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 3 \\ -6\end{array}\right)$
c $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -7 \\ 2\end{array}\right)$
d $\left(\begin{array}{c}5 \\ -3 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -4 \\ -1\end{array}\right)$

13 Find，in degrees to 1 decimal place，the angle between the vectors
a $(3 \mathbf{i}-4 \mathbf{k})$ and $(7 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})$
b $(2 \mathbf{i}-6 \mathbf{j}+3 \mathbf{k})$ and $(\mathbf{i}-3 \mathbf{j}-\mathbf{k})$
c $(6 \mathbf{i}-2 \mathbf{j}-9 \mathbf{k})$ and $(3 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$
d $(\mathbf{i}+5 \mathbf{j}-3 \mathbf{k})$ and $(-3 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})$

14 The points $A(7,2,-2), B(-1,6,-3)$ and $C(-3,1,2)$ are the vertices of a triangle．
a Find $\overrightarrow{B A}$ and $\overrightarrow{B C}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k} ．
b Show that $\angle A B C=82.2^{\circ}$ to 1 decimal place．
c Find the area of triangle $A B C$ to 3 significant figures．
15 Relative to a fixed origin，the points A, B and C have position vectors（ $3 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ ）， $(4 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k})$ and $(2 \mathbf{i}-\mathbf{j})$ respectively．
a Find the exact value of the cosine of angle $B A C$ ．
b Hence show that the area of triangle $A B C$ is $3 \sqrt{2}$ ．
16 Find，in degrees to 1 decimal place，the acute angle between each pair of lines．
a $\quad \mathbf{r}=\left(\begin{array}{c}1 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -4 \\ 2\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}5 \\ -2 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}8 \\ 0 \\ -6\end{array}\right)$
b $\quad \mathbf{r}=\left(\begin{array}{c}0 \\ -3 \\ 7\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -1 \\ -18\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}4 \\ 6 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -12 \\ 3\end{array}\right)$
c $\mathbf{r}=\left(\begin{array}{l}7 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-2 \\ 6 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -5 \\ 3\end{array}\right)$
d $\mathbf{r}=\left(\begin{array}{c}2 \\ -3 \\ -9\end{array}\right)+\lambda\left(\begin{array}{c}-4 \\ -6 \\ 7\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}11 \\ 1 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}5 \\ -1 \\ -8\end{array}\right)$

17 Relative to a fixed origin，the points A and B have position vectors（ $5 \mathbf{i}+8 \mathbf{j}-\mathbf{k}$ ）and （ $6 \mathbf{i}+5 \mathbf{j}+\mathbf{k}$ ）respectively．
a Find a vector equation of the straight line l_{1} which passes through A and B ．
The line l_{2} has the equation $\mathbf{r}=4 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}+\mu(-5 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$ ．
b Show that lines l_{1} and l_{2} intersect and find the position vector of their point of intersection．
c Find，in degrees，the acute angle between lines l_{1} and l_{2} ．
18 Find，in degrees to 1 decimal place，the acute angle between the lines with cartesian equations

$$
\frac{x-2}{3}=\frac{y}{2}=\frac{z+5}{-6} \quad \text { and } \quad \frac{x-4}{-4}=\frac{y+1}{7}=\frac{z-3}{-4} .
$$

19 The line l has the equation $\mathbf{r}=7 \mathbf{i}-2 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k})$ and the line m has the equation $\mathbf{r}=-4 \mathbf{i}+7 \mathbf{j}-6 \mathbf{k}+\mu(5 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k})$ ．
a Find the coordinates of the point A where lines l and m intersect．
b Find，in degrees，the acute angle between lines l and m ．
The point B has coordinates $(5,1,-4)$ ．
c Show that B lies on the line l ．
d Find the distance of B from m ．
20 Relative to a fixed origin O ，the points A and B have position vectors $(9 \mathbf{i}+6 \mathbf{j})$ and $(11 \mathbf{i}+5 \mathbf{j}+\mathbf{k})$ respectively．
a Show that for all values of λ ，the point C with position vector $(9+2 \lambda) \mathbf{i}+(6-\lambda) \mathbf{j}+\lambda \mathbf{k}$ lies on the straight line l which passes through A and B ．
b Find the value of λ for which $O C$ is perpendicular to l ．
c Hence，find the position vector of the foot of the perpendicular from O to l ．
21 Find the coordinates of the point on each line which is closest to the origin．
a $\quad \mathbf{r}=-4 \mathbf{i}+2 \mathbf{j}+7 \mathbf{k}+\lambda(\mathbf{i}+3 \mathbf{j}-4 \mathbf{k})$
b $\mathbf{r}=7 \mathbf{i}+11 \mathbf{j}-9 \mathbf{k}+\lambda(6 \mathbf{i}-9 \mathbf{j}+3 \mathbf{k})$

