1 Find the binomial expansion of each of the following in ascending powers of x up to and including the term in x^{3} ，for $|x|<1$ ．
a $(1+x)^{-1}$
b $(1+x)^{\frac{1}{2}}$
c $2(1+x)^{-3}$
d $(1+x)^{\frac{2}{3}}$
e $\sqrt[3]{1-x}$
f $\frac{1}{(1+x)^{2}}$
g $\frac{1}{4(1-x)^{4}}$
h $\frac{3}{\sqrt{1-x}}$

2 Expand each of the following in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which each expansion is valid．
a $(1+2 x)^{\frac{1}{2}}$
b $(1-3 x)^{-1}$
c $(1-4 x)^{-\frac{1}{2}}$
d $\left(1+\frac{1}{2} x\right)^{-3}$
e $(1-6 x)^{\frac{1}{3}}$
f $\left(1+\frac{1}{4} x\right)^{-4}$
g $(1+2 x)^{\frac{3}{2}}$
h $(1-3 x)^{-\frac{4}{3}}$

3 a Expand $(1-2 x)^{\frac{1}{2}},|x|<\frac{1}{2}$ ，in ascending powers of x up to and including the term in x^{3} ．
b By substituting a suitable value of x in your expansion，find an estimate for $\sqrt{0.98}$
c Show that $\sqrt{0.98}=\frac{7}{10} \sqrt{2}$ and hence find the value of $\sqrt{2}$ correct to 8 significant figures．
4 Expand each of the following in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which each expansion is valid．
a $(2+x)^{-1}$
b $(4+x)^{\frac{1}{2}}$
c $(3-x)^{-3}$
d $(9+3 x)^{\frac{1}{2}}$
e $(8-24 x)^{\frac{1}{3}}$
f $(4-3 x)^{-1}$
g $(4+6 x)^{-\frac{1}{2}}$
h $(3+2 x)^{-2}$

5 a Expand $(1+2 x)^{-1},|x|<\frac{1}{2}$ ，in ascending powers of x up to and including the term in x^{3} ．
b Hence find the series expansion of $\frac{1-x}{1+2 x},|x|<\frac{1}{2}$ ，in ascending powers of x up to and including the term in x^{3} ．

6 Find the first four terms in the series expansion in ascending powers of x of each of the following and state the set of values of x for which each expansion is valid．
a $\frac{1+3 x}{1-x}$
b $\frac{2 x-1}{(1+4 x)^{2}}$
c $\frac{3+x}{2-x}$
d $\frac{1-x}{\sqrt{1+2 x}}$

7 a Express $\frac{x-2}{(1-x)(1-2 x)}$ in partial fractions．
b Hence find the series expansion of $\frac{x-2}{(1-x)(1-2 x)}$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which the expansion is valid．

8 By first expressing $\mathrm{f}(x)$ in partial fractions，find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which it is valid．
a $\mathrm{f}(x) \equiv \frac{4}{(1+x)(1-3 x)}$
b $\mathrm{f}(x) \equiv \frac{1-6 x}{1+3 x-4 x^{2}}$
c $\mathrm{f}(x) \equiv \frac{5}{2-3 x-2 x^{2}}$
d $\mathrm{f}(x) \equiv \frac{7 x-3}{x^{2}-4 x+3}$
e $\mathrm{f}(x) \equiv \frac{3+5 x}{(1+3 x)(1+x)^{2}}$
f $\mathrm{f}(x) \equiv \frac{2 x^{2}+4}{2 x^{2}+x-1}$

1 a Expand $(1-x)^{\frac{1}{2}},|x|<1$ ，in ascending powers of x up to and including the term in x^{3} ．
b By substituting $x=0.01$ in your expansion，find the value of $\sqrt{11}$ correct to 9 significant figures．

2 The series expansion of $(1+8 x)^{\frac{1}{2}}$ ，in ascending powers of x up to and including the term in x^{3} ，is

$$
1+4 x+a x^{2}+b x^{3},|x|<\frac{1}{8}
$$

a Find the values of the constants a and b ．
b Use the expansion，with $x=0.01$ ，to find the value of $\sqrt{3}$ to 5 decimal places．
3 a Expand $(9-6 x)^{\frac{1}{2}},|x|<\frac{3}{2}$ ，in ascending powers of x up to and including the term in x^{3} ， simplifying the coefficient in each term．
b Use your expansion with a suitable value of x to find the value of $\sqrt{8.7}$ correct to 7 significant figures．

4 a Expand $(1+6 x)^{\frac{1}{3}},|x|<\frac{1}{6}$ ，in ascending powers of x up to and including the term in x^{3} ．
b Use your expansion，with $x=0.004$ ，to find the cube root of 2 correct to 7 significant figures．
5 a Expand $(1+2 x)^{-3}$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which the expansion is valid．
b Hence，or otherwise，find the series expansion in ascending powers of x up to and including the term in x^{3} of $\frac{1+3 x}{(1+2 x)^{3}}$ ．

6 Find the coefficient of x^{2} in the series expansion of $\frac{2+x}{\sqrt{4-2 x}},|x|<2$ ．
$7 \quad$ a Find the values of A and B such that

$$
\frac{2-11 x}{1-5 x+4 x^{2}} \equiv \frac{A}{1-x}+\frac{B}{1-4 x} .
$$

b Hence，find the series expansion of $\frac{2-11 x}{1-5 x+4 x^{2}}$ in ascending powers of x up to and including the term in x^{3} and state the set of values of x for which the expansion is valid．

$$
\mathrm{f}(x) \equiv \frac{4-17 x}{(1+2 x)(1-3 x)^{2}},|x|<\frac{1}{3} .
$$

a Express $\mathrm{f}(x)$ in partial fractions．
b Hence，or otherwise，find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3} ．

9 The first three terms in the expansion of $(1+a x)^{b}$ ，in ascending powers of x ，for $|a x|<1$ ，are

$$
1-6 x+24 x^{2}
$$

a Find the values of the constants a and b ．
b Find the coefficient of x^{3} in the expansion．

