1 Integrate with respect to x
a e^{x}
b $4 \mathrm{e}^{x}$
c $\frac{1}{x}$
d $\frac{6}{x}$

2 Integrate with respect to t
a $2+3 \mathrm{e}^{t}$
b $t+t^{-1}$
c $t^{2}-\mathrm{e}^{t}$
d $9-2 t^{-1}$
e $\frac{7}{t}+\sqrt{t}$
f $\frac{1}{4} \mathrm{e}^{t}-\frac{1}{t}$
g $\frac{1}{3 t}+\frac{1}{t^{2}}$
h $\frac{2}{5 t}-\frac{3 e^{t}}{7}$

3 Find
a $\int\left(5-\frac{3}{x}\right) \mathrm{d} x$
b $\int\left(u^{-1}+u^{-2}\right) \mathrm{d} u$
c $\int \frac{2 \mathrm{e}^{t}+1}{5} \mathrm{~d} t$
d $\int \frac{3 y+1}{y} \mathrm{~d} y$
e $\int\left(\frac{3}{4} \mathrm{e}^{t}+3 \sqrt{t}\right) \mathrm{d} t$
f $\int\left(x-\frac{1}{x}\right)^{2} \mathrm{~d} x$

4 The curve $y=\mathrm{f}(x)$ passes through the point $(1,-3)$ ．
Given that $\mathrm{f}^{\prime}(x)=\frac{(2 x-1)^{2}}{x}$ ，find an expression for $\mathrm{f}(x)$ ．
5 Evaluate
a $\int_{0}^{1}\left(\mathrm{e}^{x}+10\right) \mathrm{d} x$
b $\int_{2}^{5}\left(t+\frac{1}{t}\right) \mathrm{d} t$
c $\int_{1}^{4} \frac{5-x^{2}}{x} \mathrm{~d} x$
d $\int_{-2}^{-1} \frac{6 y+1}{3 y} \mathrm{~d} y$
e $\int_{-3}^{3}\left(\mathrm{e}^{x}-x^{2}\right) \mathrm{d} x$
f $\int_{2}^{3} \frac{4 r^{2}-3 r+6}{r^{2}} \mathrm{~d} r$
g $\int_{\ln 2}^{\ln 4}\left(7-\mathrm{e}^{u}\right) \mathrm{d} u$
h $\int_{6}^{10} r^{-\frac{1}{2}}\left(2 r^{\frac{1}{2}}+9 r^{-\frac{1}{2}}\right) \mathrm{d} r$
i $\int_{4}^{9}\left(\frac{1}{\sqrt{x}}+3 \mathrm{e}^{x}\right) \mathrm{d} x$

The shaded region on the diagram is bounded by the curve $y=3+\mathrm{e}^{x}$ ，the coordinate axes and the line $x=2$ ．Show that the area of the shaded region is $\mathrm{e}^{2}+5$ ．

The shaded region on the diagram is bounded by the curve $y=2 x+\frac{1}{x}$ ，the x－axis and the lines $x=1$ and $x=4$ ．Find the area of the shaded region in the form $a+b \ln 2$ ．

8 Find the exact area of the region enclosed by the given curve，the x－axis and the given ordinates． In each case，$y>0$ over the interval being considered．
a $y=4 x+2 \mathrm{e}^{x}, \quad x=0, \quad x=1$
b $y=1+\frac{3}{x}, \quad x=2, \quad x=4$
c $y=4-\frac{1}{x}, \quad x=-3, \quad x=-1$
d $y=2-\frac{1}{2} \mathrm{e}^{x}, \quad x=0, \quad x=\ln 2$
e $y=\mathrm{e}^{x}+\frac{5}{x}, \quad x=\frac{1}{2}, \quad x=2$
f $y=\frac{x^{3}-2}{x}, \quad x=2, \quad x=3$

9

The diagram shows the curve with equation $y=9-\frac{7}{x}-2 x, x>0$ ．
a Find the coordinates of the points where the curve crosses the x－axis．
b Show that the area of the region bounded by the curve and the x－axis is $11 \frac{1}{4}-7 \ln \frac{7}{2}$ ．
10 a Sketch the curve $y=\mathrm{e}^{x}-a$ where a is a constant and $a>1$ ．
Show on your sketch the coordinates of any points of intersection with the coordinate axes and the equation of any asymptotes．
b Find，in terms of a ，the area of the finite region bounded by the curve $y=\mathrm{e}^{x}-a$ and the coordinate axes．
c Given that the area of this region is $1+a$ ，show that $a=\mathrm{e}^{2}$ ．

The diagram shows the curve with equation $y=\mathrm{e}^{x}$ ．The point P on the curve has x－coordinate 3， and the tangent to the curve at P intersects the x－axis at Q and the y－axis at R ．
a Find an equation of the tangent to the curve at P ．
b Find the coordinates of the points Q and R ．
The shaded region is bounded by the curve，the tangent to the curve at P and the y－axis．
c Find the exact area of the shaded region．

$$
\mathrm{f}(x) \equiv\left(\frac{3}{\sqrt{x}}-4\right)^{2}, x \in \mathbb{R}, x>0 .
$$

a Find the coordinates of the point where the curve $y=\mathrm{f}(x)$ meets the x－axis．
The finite region R is bounded by the curve $y=\mathrm{f}(x)$ ，the line $x=1$ and the x－axis．
b Show that the area of R is approximately 0.178

1 Integrate with respect to x
a $(x-2)^{7}$
b $(2 x+5)^{3}$
c $6(1+3 x)^{4}$
d $\left(\frac{1}{4} x-2\right)^{5}$
e $(8-5 x)^{4}$
f $\frac{1}{(x+7)^{2}}$
g $\frac{8}{(4 x-3)^{5}}$
h $\frac{1}{2(5-3 x)^{3}}$

2 Find
a $\int(3+t)^{\frac{3}{2}} \mathrm{~d} t$
b $\int \sqrt{4 x-1} \mathrm{~d} x$
c $\int \frac{1}{2 y+1} \mathrm{~d} y$
d $\int \mathrm{e}^{2 x-3} \mathrm{~d} x$
e $\int \frac{3}{2-7 r} \mathrm{~d} r$
f $\int \sqrt[3]{5 t-2} \mathrm{~d} t$
g $\int \frac{1}{\sqrt{6-y}} \mathrm{~d} y$
h $\int 5 \mathrm{e}^{7-3 t} \mathrm{~d} t$
i $\int \frac{4}{3 u+1} \mathrm{~d} u$

3 Given $\mathrm{f}^{\prime}(x)$ and a point on the curve $y=\mathrm{f}(x)$ ，find an expression for $\mathrm{f}(x)$ in each case．
a $\mathrm{f}^{\prime}(x)=8(2 x-3)^{3}$ ，
b $\mathrm{f}^{\prime}(x)=6 \mathrm{e}^{2 x+4}$,
$(-2,1)$
c $\mathrm{f}^{\prime}(x)=2-\frac{8}{4 x-1}$ ，
$\left(\frac{1}{2}, 4\right)$
d $\mathrm{f}^{\prime}(x)=8 x-\frac{3}{(3 x-2)^{2}}$,

4 Evaluate
a $\int_{0}^{1}(3 x+1)^{2} d x$
b $\int_{1}^{2}(2 x-1)^{3} d x$
c $\int_{2}^{4} \frac{1}{(5-x)^{2}} \mathrm{~d} x$
d $\int_{-1}^{1} \mathrm{e}^{2 x+2} \mathrm{~d} x$
e $\int_{2}^{6} \sqrt{3 x-2} \mathrm{~d} x$
f $\int_{1}^{2} \frac{4}{6 x-3} \mathrm{~d} x$
g $\int_{0}^{1} \frac{1}{\sqrt[3]{7 x+1}} \mathrm{~d} x$
h $\int_{-7}^{-1} \frac{1}{5 x+3} \mathrm{~d} x$
i $\int_{4}^{7}\left(\frac{x-4}{2}\right)^{3} \mathrm{~d} x$

5 Find the exact area of the region enclosed by the given curve，the x－axis and the given ordinates． In each case，$y>0$ over the interval being considered．
a $y=\mathrm{e}^{3-x}$ ，
$x=3$,
$x=4$
b $y=(3 x-5)^{3}, \quad x=2, \quad x=3$
c $y=\frac{3}{4 x+2}$ ，
$x=1, \quad x=4$
d $y=\frac{1}{(1-2 x)^{2}}, \quad x=-2, \quad x=0$

6

The diagram shows part of the curve with equation $y=\frac{12}{(2 x+1)^{3}}$ ．
Find the area of the shaded region bounded by the curve，the coordinate axes and the line $x=1$ ．

1 a Express $\frac{3 x+5}{(x+1)(x+3)}$ in partial fractions．
b Hence，find $\int \frac{3 x+5}{(x+1)(x+3)} \mathrm{d} x$ ．

2 Show that $\int \frac{3}{(t-2)(t+1)} \mathrm{d} t=\ln \left|\frac{t-2}{t+1}\right|+c$ ．

3 Integrate with respect to x
a $\frac{6 x-11}{(2 x+1)(x-3)}$
b $\frac{14-x}{x^{2}+2 x-8}$
c $\frac{6}{(2+x)(1-x)}$
d $\frac{x+1}{5 x^{2}-14 x+8}$

4 a Find the values of the constants A, B and C such that

$$
\frac{x^{2}-6}{(x+4)(x-1)} \equiv A+\frac{B}{x+4}+\frac{C}{x-1} .
$$

b Hence，find $\int \frac{x^{2}-6}{(x+4)(x-1)} \mathrm{d} x$ ．

5 a Express $\frac{x^{2}-x-4}{(x+2)(x+1)^{2}}$ in partial fractions．
b Hence，find $\int \frac{x^{2}-x-4}{(x+2)(x+1)^{2}} \mathrm{~d} x$ ．

6 Integrate with respect to x
a $\frac{3 x^{2}-5}{x^{2}-1}$
b $\frac{x(4 x+13)}{(2+x)^{2}(3-x)}$
c $\frac{x^{2}-x+1}{x^{2}-3 x-10}$
d $\frac{2-6 x+5 x^{2}}{x^{2}(1-2 x)}$

7 Show that $\int_{3}^{4} \frac{3 x-5}{(x-1)(x-2)} \mathrm{d} x=2 \ln 3-\ln 2$ ．

8 Find the exact value of
a $\int_{1}^{3} \frac{x+3}{x(x+1)} \mathrm{d} x$
b $\int_{0}^{2} \frac{3 x-2}{x^{2}+x-12} \mathrm{~d} x$
c $\int_{1}^{2} \frac{9}{2 x^{2}-7 x-4} \mathrm{~d} x$
d $\int_{0}^{2} \frac{2 x^{2}-7 x+7}{x^{2}-2 x-3} \mathrm{~d} x$
e $\int_{0}^{1} \frac{5 x+7}{(x+1)^{2}(x+3)} \mathrm{d} x$
f $\int_{-1}^{1} \frac{2+x}{8-2 x-x^{2}} \mathrm{~d} x$

9 a Express $\frac{1}{x^{2}-a^{2}}$ ，where a is a positive constant，in partial fractions．
b Hence，show that $\int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+c$ ．
c Find $\int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x$ ．

10 Evaluate
a $\int_{-1}^{1} \frac{1}{x^{2}-9} \mathrm{~d} x$
b $\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1-x^{2}} \mathrm{~d} x$
c $\int_{0}^{1} \frac{3}{2 x^{2}-8} \mathrm{~d} x$

1 Integrate with respect to x
a $2 \cos x$
b $\sin 4 x$
c $\cos \frac{1}{2} x$
d $\sin \left(x+\frac{\pi}{4}\right)$
e $\cos (2 x-1)$
f $3 \sin \left(\frac{\pi}{3}-x\right)$
g $\sec x \tan x$
h $\operatorname{cosec}^{2} x$
i $5 \sec ^{2} 2 x$
j $\operatorname{cosec} \frac{1}{4} x \cot \frac{1}{4} x$
k $\frac{4}{\sin ^{2} x}$
l $\frac{1}{\cos ^{2}(4 x+1)}$

2 Evaluate
a $\int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x$
b $\int_{0}^{\frac{\pi}{6}} \sin 2 x \mathrm{~d} x$
c $\int_{0}^{\frac{\pi}{2}} 2 \sec \frac{1}{2} x \tan \frac{1}{2} x d x$
d $\int_{0}^{\frac{\pi}{3}} \cos \left(2 x-\frac{\pi}{3}\right) \mathrm{d} x$
e $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec ^{2} 3 x \mathrm{~d} x$
f $\int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} \operatorname{cosec} x \cot x \mathrm{~d} x$

3 a Express $\tan ^{2} \theta$ in terms of $\sec \theta$ ．
b Show that $\int \tan ^{2} x \mathrm{~d} x=\tan x-x+c$ ．
4 a Use the identity for $\cos (A+B)$ to express $\cos ^{2} A$ in terms of $\cos 2 A$ ．
b Find $\int \cos ^{2} x \mathrm{~d} x$ ．

5 Find
a $\int \sin ^{2} x \mathrm{~d} x$
b $\int \cot ^{2} 2 x \mathrm{~d} x$
c $\int \sin x \cos x d x$
d $\int \frac{\sin x}{\cos ^{2} x} \mathrm{~d} x$
e $\int 4 \cos ^{2} 3 x d x$
f $\int(1+\sin x)^{2} d x$
g $\int(\sec x-\tan x)^{2} \mathrm{~d} x$
h $\int \operatorname{cosec} 2 x \cot x \mathrm{~d} x$
i $\int \cos ^{4} x \mathrm{~d} x$

6 Evaluate
a $\int_{0}^{\frac{\pi}{2}} 2 \cos ^{2} x \mathrm{~d} x$
b $\int_{0}^{\frac{\pi}{4}} \cos 2 x \sin 2 x \mathrm{~d} x$
c $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \tan ^{2} \frac{1}{2} x \mathrm{~d} x$
d $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\cos 2 x}{\sin ^{2} 2 x} \mathrm{~d} x$
e $\int_{0}^{\frac{\pi}{4}}(1-2 \sin x)^{2} d x$
f $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{2} x \operatorname{cosec}^{2} x d x$

7 a Use the identities for $\sin (A+B)$ and $\sin (A-B)$ to show that

$$
\sin A \cos B \equiv \frac{1}{2}[\sin (A+B)+\sin (A-B)] .
$$

b Find $\int \sin 3 x \cos x \mathrm{~d} x$ ．
8 Integrate with respect to x
a $2 \sin 5 x \sin x$
b $\cos 2 x \cos x$
c $4 \sin x \cos 4 x$
d $\cos \left(x+\frac{\pi}{6}\right) \sin x$

1 Showing your working in full，use the given substitution to find
a $\int 2 x\left(x^{2}-1\right)^{3} \mathrm{~d} x$
$u=x^{2}+1$
b $\int \sin ^{4} x \cos x d x$
$u=\sin x$
c $\int 3 x^{2}\left(2+x^{3}\right)^{2} \mathrm{~d} x$
$u=2+x^{3}$
d $\int 2 x \mathrm{e}^{x^{2}} \mathrm{~d} x$
$u=x^{2}$
e $\int \frac{x}{\left(x^{2}+3\right)^{4}} \mathrm{~d} x \quad u=x^{2}+3$
f $\int \sin 2 x \cos ^{3} 2 x \mathrm{~d} x \quad u=\cos 2 x$
g $\int \frac{3 x}{x^{2}-2} \mathrm{~d} x$
$u=x^{2}-2$
h $\int x \sqrt{1-x^{2}} \mathrm{~d} x$
$u=1-x^{2}$
i $\int \sec ^{3} x \tan x d x$
$u=\sec x$
j $\quad \int(x+1)\left(x^{2}+2 x\right)^{3} \mathrm{~d} x \quad u=x^{2}+2 x$

2 a Given that $u=x^{2}+3$ ，find the value of u when
$\begin{array}{ll}\text { i } \quad x=0 \\ \text { ii } & x=1\end{array}$
b Using the substitution $u=x^{2}+3$ ，show that

$$
\int_{0}^{1} 2 x\left(x^{2}+3\right)^{2} \mathrm{~d} x=\int_{3}^{4} u^{2} \mathrm{~d} u
$$

c Hence，show that

$$
\int_{0}^{1} 2 x\left(x^{2}+3\right)^{2} \mathrm{~d} x=12 \frac{1}{3} .
$$

3 Using the given substitution，evaluate
a $\int_{1}^{2} x\left(x^{2}-3\right)^{3} \mathrm{~d} x$
$u=x^{2}-3$
b $\int_{0}^{\frac{\pi}{6}} \sin ^{3} x \cos x \mathrm{~d} x \quad u=\sin x$
c $\int_{0}^{3} \frac{4 x}{x^{2}+1} \mathrm{~d} x$
$u=x^{2}+1$
d $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan ^{2} x \sec ^{2} x \mathrm{~d} x \quad u=\tan x$
e $\int_{2}^{3} \frac{x}{\sqrt{x^{2}-3}} \mathrm{~d} x \quad u=x^{2}-3$
f $\int_{-2}^{-1} x^{2}\left(x^{3}+2\right)^{2} \mathrm{~d} x \quad u=x^{3}+2$
g $\int_{0}^{1} \mathrm{e}^{2 x}\left(1+\mathrm{e}^{2 x}\right)^{3} \mathrm{~d} x \quad u=1+\mathrm{e}^{2 x}$
h $\int_{3}^{5}(x-2)\left(x^{2}-4 x\right)^{2} \mathrm{~d} x \quad u=x^{2}-4 x$

4 a Using the substitution $u=4-x^{2}$ ，show that

$$
\int_{0}^{2} x\left(4-x^{2}\right)^{3} \mathrm{~d} x=\int_{0}^{4} \frac{1}{2} u^{3} \mathrm{~d} u
$$

b Hence，evaluate

$$
\int_{0}^{2} x\left(4-x^{2}\right)^{3} \mathrm{~d} x
$$

5 Using the given substitution，evaluate
a $\int_{0}^{1} x \mathrm{e}^{2-x^{2}} \mathrm{~d} x$
$u=2-x^{2}$
b $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos x} \mathrm{~d} x$
$u=1+\cos x$

6 a By writing $\cot x$ as $\frac{\cos x}{\sin x}$ ，use the substitution $u=\sin x$ to show that

$$
\int \cot x \mathrm{~d} x=\ln |\sin x|+c .
$$

b Show that

$$
\int \tan x \mathrm{~d} x=\ln |\sec x|+c .
$$

c Evaluate

$$
\int_{0}^{\frac{\pi}{6}} \tan 2 x \mathrm{~d} x .
$$

7 By recognising a function and its derivative，or by using a suitable substitution，integrate with respect to x
a $3 x^{2}\left(x^{3}-2\right)^{3}$
b $\mathrm{e}^{\sin x} \cos x$
c $\frac{x}{x^{2}+1}$
d $(2 x+3)\left(x^{2}+3 x\right)^{2}$
e $x \sqrt{x^{2}+4}$
f $\cot ^{3} x \operatorname{cosec}^{2} x$
g $\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}$
h $\frac{\cos 2 x}{3+\sin 2 x}$
i $\frac{x^{3}}{\left(x^{4}-2\right)^{2}}$
j $\frac{(\ln x)^{3}}{x}$
k $x^{\frac{1}{2}}\left(1+x^{\frac{3}{2}}\right)^{2}$
$1 \frac{x}{\sqrt{5-x^{2}}}$

8 Evaluate
a $\int_{0}^{\frac{\pi}{2}} \sin x(1+\cos x)^{2} d x$
b $\int_{-1}^{0} \frac{\mathrm{e}^{2 x}}{2-\mathrm{e}^{2 x}} \mathrm{~d} x$
c $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cot x \operatorname{cosec}^{4} x \mathrm{~d} x$
d $\int_{2}^{4} \frac{x+1}{x^{2}+2 x+8} \mathrm{~d} x$

9 Using the substitution $u=x+1$ ，show that

$$
\int x(x+1)^{3} \mathrm{~d} x=\frac{1}{20}(4 x-1)(x+1)^{4}+c .
$$

10 Using the given substitution，find
a $\int x(2 x-1)^{4} \mathrm{~d} x$
$u=2 x-1$
b $\int x \sqrt{1-x} \mathrm{~d} x$
$u^{2}=1-x$
c $\int \frac{1}{\left(1-x^{2}\right)^{\frac{3}{2}}} \mathrm{~d} x$
$x=\sin u$
d $\int \frac{1}{\sqrt{x}-1} \mathrm{~d} x$
$x=u^{2}$
e $\int(x+1)(2 x+3)^{3} \mathrm{~d} x \quad u=2 x+3$
f $\int \frac{x^{2}}{\sqrt{x-2}} \mathrm{~d} x$
$u^{2}=x-2$

11 Using the given substitution，evaluate
a $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x$
$x=\sin u$
b $\int_{0}^{2} x(2-x)^{3} \mathrm{~d} x$
$u=2-x$
c $\int_{0}^{1} \sqrt{4-x^{2}} \mathrm{~d} x$
$x=2 \sin u$
d $\int_{0}^{3} \frac{x^{2}}{x^{2}+9} \mathrm{~d} x \quad x=3 \tan u$

1 Using integration by parts，show that

$$
\int x \cos x \mathrm{~d} x=x \sin x+\cos x+c
$$

2 Use integration by parts to find
a $\int x \mathrm{e}^{x} \mathrm{~d} x$
b $\int 4 x \sin x d x$
c $\int x \cos 2 x d x$
d $\int x \sqrt{x+1} \mathrm{~d} x$
e $\int \frac{x}{\mathrm{e}^{3 x}} \mathrm{~d} x$
f $\int x \sec ^{2} x d x$

3 Using
i integration by parts，
ii the substitution $u=2 x+1$ ，
find $\int x(2 x+1)^{3} \mathrm{~d} x$ ，and show that your answers are equivalent．
4 Show that

$$
\int_{0}^{2} x \mathrm{e}^{-x} \mathrm{~d} x=1-3 \mathrm{e}^{-2}
$$

5 Evaluate
a $\int_{0}^{\frac{\pi}{6}} x \cos x \mathrm{~d} x$
b $\int_{0}^{1} x \mathrm{e}^{2 x} \mathrm{~d} x$
c $\int_{0}^{\frac{\pi}{4}} x \sin 3 x \mathrm{~d} x$

6 Using integration by parts twice in each case，show that
a $\int x^{2} \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}\left(x^{2}-2 x+2\right)+c$ ，
b $\int \mathrm{e}^{x} \sin x \mathrm{~d} x=\frac{1}{2} \mathrm{e}^{x}(\sin x-\cos x)+c$ ．
7 Find
a $\int x^{2} \sin x d x$
b $\int x^{2} \mathrm{e}^{3 x} \mathrm{~d} x$
c $\int \mathrm{e}^{-x} \cos 2 x \mathrm{~d} x$

8 a Write down the derivative of $\ln x$ with respect to x ．
b Use integration by parts to find

$$
\int \ln x \mathrm{~d} x
$$

9 Find
a $\int \ln 2 x d x$
b $\int 3 x \ln x \mathrm{~d} x$
c $\int(\ln x)^{2} \mathrm{~d} x$

10 Evaluate
a $\int_{-1}^{0}(x+2) \mathrm{e}^{x} \mathrm{~d} x$
b $\int_{1}^{2} x^{2} \ln x \mathrm{~d} x$
c $\int_{\frac{1}{3}}^{1} 2 x \mathrm{e}^{3 x-1} \mathrm{~d} x$
d $\int_{0}^{3} \ln (2 x+3) \mathrm{d} x$
e $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x \mathrm{~d} x$
f $\int_{0}^{\frac{\pi}{4}} \mathrm{e}^{3 x} \sin 2 x \mathrm{~d} x$

1

The diagram shows part of the curve with parametric equations

$$
x=2 t-4, \quad y=\frac{1}{t} .
$$

The shaded region is bounded by the curve，the coordinate axes and the line $x=2$ ．
a Find the value of the parameter t when $x=0$ and when $x=2$ ．
b Show that the area of the shaded region is given by $\int_{2}^{3} \frac{2}{t} \mathrm{~d} t$ ．
c Hence，find the area of the shaded region．
d Verify your answer to part \mathbf{c} by first finding a cartesian equation for the curve．

The diagram shows the ellipse with parametric equations

$$
x=4 \cos \theta, \quad y=2 \sin \theta, \quad 0 \leq \theta<2 \pi,
$$

which meets the positive coordinate axes at the points A and B ．
a Find the value of the parameter θ at the points A and B ．
b Show that the area of the shaded region bounded by the curve and the positive coordinate axes is given by

$$
\int_{0}^{\frac{\pi}{2}} 8 \sin ^{2} \theta \mathrm{~d} \theta
$$

c Hence，show that the area of the region enclosed by the ellipse is 8π ．

The diagram shows the curve with parametric equations

$$
x=2 \sin t, \quad y=5 \sin 2 t, \quad 0 \leq t<\pi .
$$

a Show that the area of the region enclosed by the curve is given by $\int_{0}^{\frac{\pi}{2}} 20 \sin 2 t \cos t \mathrm{~d} t$ ．
b Evaluate this integral．

1 Using an appropriate method，integrate with respect to x
a $(2 x-3)^{4}$
b $\operatorname{cosec}^{2} \frac{1}{2} x$
c $2 \mathrm{e}^{4 x-1}$
d $\frac{2(x-1)}{x(x+1)}$
e $\frac{3}{\cos ^{2} 2 x}$
f $x\left(x^{2}+3\right)^{3}$
g $\sec ^{4} x \tan x$
h $\sqrt{7+2 x}$
i $x \mathrm{e}^{3 x}$
j $\frac{x+2}{x^{2}-2 x-3}$
k $\frac{1}{4(x+1)^{3}}$
l $\tan ^{2} 3 x$
m $4 \cos ^{2}(2 x+1)$
n $\frac{3 x}{1-x^{2}}$
0 $x \sin 2 x$
p $\frac{x+4}{x+2}$

2 Evaluate
a $\int_{1}^{2} 6 \mathrm{e}^{2 x-3} \mathrm{~d} x$
b $\int_{0}^{\frac{\pi}{3}} \tan x \mathrm{~d} x$
c $\int_{-2}^{2} \frac{2}{x-3} \mathrm{~d} x$
d $\int_{2}^{3} \frac{6+x}{4+3 x-x^{2}} \mathrm{~d} x$
e $\int_{1}^{2}(1-2 x)^{3} d x$
f $\int_{0}^{\frac{\pi}{3}} \sin ^{2} x \sin 2 x \mathrm{~d} x$

3 Using the given substitution，evaluate
a $\int_{0}^{\frac{3}{2}} \frac{1}{\sqrt{9-x^{2}}} \mathrm{~d} x$
$x=3 \sin u$
b $\int_{0}^{1} x(1-3 x)^{3} \mathrm{~d} x \quad u=1-3 x$
c $\int_{2}^{2 \sqrt{3}} \frac{1}{4+x^{2}} \mathrm{~d} x$
$x=2 \tan u$
d $\int_{-1}^{0} x^{2} \sqrt{x+1} \mathrm{~d} x$
$u^{2}=x+1$

4 Integrate with respect to x
a $\frac{2}{5-3 x}$
b $(x+1) \mathrm{e}^{x^{2}+2 x}$
c $\frac{1-x}{2 x+1}$
d $\sin 3 x \cos 2 x$
e $3 x(x-1)^{4}$
f $\frac{3 x^{2}+6 x+2}{x^{2}+3 x+2}$
g $\frac{5}{\sqrt[3]{2 x-1}}$
h $\frac{\cos x}{2+3 \sin x}$
i $\frac{x^{2}}{\sqrt{x^{3}-1}}$
j $(2-\cot x)^{2}$
k $\frac{6 x-5}{(x-1)(2 x-1)^{2}}$
l $x^{2} \mathrm{e}^{-x}$

5 Evaluate
a $\int_{2}^{4} \frac{1}{3 x-4} \mathrm{~d} x$
b $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec}^{2} x \cot ^{2} x \mathrm{~d} x$
c $\int_{0}^{1} \frac{7-x^{2}}{(2-x)^{2}(3-x)} \mathrm{d} x$
d $\int_{0}^{\frac{\pi}{2}} x \cos \frac{1}{2} x \mathrm{~d} x$
e $\int_{1}^{5} \frac{1}{\sqrt{4 x+5}} \mathrm{~d} x$
f $\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} 2 \cos x \cos 3 x d x$
g $\int_{0}^{2} x \sqrt{2 x^{2}+1} \mathrm{~d} x$
h $\int_{0}^{1} \frac{x^{2}+1}{x-2} \mathrm{~d} x$
i $\int_{0}^{1}(x-2)(x+1)^{3} \mathrm{~d} x$

6 Find the exact area of the region enclosed by the given curve，the x－axis and the given ordinates．
a $y=\frac{x}{\left(x^{2}+2\right)^{3}}, \quad x=1, \quad x=2$
b $y=\ln x$ ，
$x=2, \quad x=4$

7 Given that

$$
\int_{3}^{6} \frac{a x^{2}+b}{x} \mathrm{~d} x=18+5 \ln 2
$$

find the values of the rational constants a and b ．

8

The diagram shows the curve with equation $y=6-2 \mathrm{e}^{x}$ ．
a Find the coordinates of the point P where the curve crosses the x－axis．
b Show that the area of the region enclosed by the curve and the coordinate axes is $6 \ln 3-4$ ．
9 Using the substitution $u=\cot x$ ，show that

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cot ^{2} x \operatorname{cosec}^{4} x \mathrm{~d} x=\frac{2}{15}(21 \sqrt{3}-4) .
$$

10

The diagram shows the curve with parametric equations

$$
x=t+1, \quad y=4-t^{2} .
$$

a Show that the area of the region bounded by the curve and the x－axis is given by

$$
\int_{-2}^{2}\left(4-t^{2}\right) \mathrm{d} t
$$

b Hence，find the area of this region．
11 a Given that k is a constant，show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} \sin 2 x+2 k x \cos 2 x-k \sin 2 x\right)=2 x^{2} \cos 2 x+(2-4 k) x \sin 2 x .
$$

b Using your answer to part a with a suitable value of k ，or otherwise，find $\int x^{2} \cos 2 x d x$.

12

The shaded region in the diagram is bounded by the curve with equation $y=\frac{\ln x}{x^{2}}$ ，the x－axis and the line $x=2$ ．Use integration by parts to show that the area of the shaded region is $\frac{1}{2}(1-\ln 2)$ ．

13

$$
\mathrm{f}(x) \equiv \frac{x+16}{3 x^{3}+11 x^{2}+8 x-4}
$$

a Factorise completely $3 x^{3}+11 x^{2}+8 x-4$ ．
b Express $\mathrm{f}(x)$ in partial fractions．
c Show that $\int_{-1}^{0} \mathrm{f}(x) \mathrm{d} x=-(1+3 \ln 2)$ ．

1

The shaded region in the diagram is bounded by the curve $y=\frac{2}{x}$ ，the x－axis and the lines $x=\frac{1}{2}$ and $x=2$ ．Show that when the shaded region is rotated through 360° about the x－axis，the volume of the solid formed is 6π ．

The shaded region in the diagram，bounded by the curve $y=x^{2}+3$ ，the coordinate axes and the line $x=2$ ，is rotated through 2π radians about the x－axis．
Show that the volume of the solid formed is approximately 127.
3 The region enclosed by the given curve，the x－axis and the given ordinates is rotated through 360° about the x－axis．Find the exact volume of the solid formed in each case．
a $y=2 \mathrm{e}^{\frac{x}{2}}$ ，
$x=0, \quad x=1$
b $y=\frac{3}{x^{2}}$ ，
$x=-2, \quad x=-1$
c $y=1+\frac{1}{x}$ ，
$x=3, \quad x=9$
d $y=\frac{3 x^{2}+1}{x}$ ，
$x=1, \quad x=2$
e $y=\frac{1}{\sqrt{x+2}}$ ，
$x=2, \quad x=6$
f $y=\mathrm{e}^{1-x}$ ，
$x=-1, \quad x=1$

The diagram shows part of the curve with equation $y=\frac{4}{x+2}$ ．
The shaded region，R ，is bounded by the curve，the coordinate axes and the line $x=2$ ．
a Find the area of R ，giving your answer in the form $k \ln 2$ ．
The region R is rotated through 2π radians about the x－axis．
b Show that the volume of the solid formed is 4π ．

5

The diagram shows the curve with equation $y=2 x^{\frac{1}{2}}+x^{-\frac{1}{2}}$ ．
The shaded region bounded by the curve，the x－axis and the lines $x=1$ and $x=3$ is rotated through 2π radians about the x－axis．Find the volume of the solid generated，giving your answer in the form $\pi(a+\ln b)$ where a and b are integers．
a Sketch the curve $y=3 x-x^{2}$ ，showing the coordinates of any points where the curve intersects the coordinate axes．

The region bounded by the curve and the x－axis is rotated through 360° about the x－axis．
b Show that the volume of the solid generated is $\frac{81}{10} \pi$ ．

The diagram shows the curve with equation $y=3-\frac{1}{x}, x>0$ ．
a Find the coordinates of the point P where the curve crosses the x－axis．
The shaded region is bounded by the curve，the straight line $x-3=0$ and the x－axis．
b Find the area of the shaded region．
c Find the volume of the solid formed when the shaded region is rotated completely about the x－axis，giving your answer in the form $\pi(a+b \ln 3)$ where a and b are rational．

8

The diagram shows the curve $y=x-\frac{1}{x}, x \neq 0$ ．
a Find the coordinates of the points where the curve crosses the x－axis．
The shaded region is bounded by the curve，the x－axis and the line $x=3$ ．
b Show that the area of the shaded region is $4-\ln 3$ ．
The shaded region is rotated through 360° about the x－axis．
c Find the volume of the solid generated as an exact multiple of π ．

1

The diagram shows the curve $y=x^{2}+1$ which passes through the point $A(1,2)$ ．
a Find an equation of the normal to the curve at the point A ．
The normal to the curve at A meets the x－axis at the point B as shown．
b Find the coordinates of B ．
The shaded region bounded by the curve，the coordinate axes and the line $A B$ is rotated through 2π radians about the x－axis．
c Show that the volume of the solid formed is $\frac{36}{5} \pi$ ．

The shaded region in the diagram is bounded by the curve with equation $y=4 x+\frac{9}{x}$ ， the x－axis and the lines $x=1$ and $x=\mathrm{e}$ ．
a Find the area of the shaded region，giving your answer in terms of e．
b Find，to 3 significant figures，the volume of the solid formed when the shaded region is rotated completely about the x－axis．

3 The region enclosed by the given curve，the x－axis and the given ordinates is rotated through 2π radians about the x－axis．Find the exact volume of the solid formed in each case．
a $y=\operatorname{cosec} x$ ，
$x=\frac{\pi}{6}, \quad x=\frac{\pi}{3}$
b $y=\sqrt{\frac{x+3}{x+2}}$ ，
$x=1, \quad x=4$
c $y=1+\cos 2 x$,
$x=0, \quad x=\frac{\pi}{4}$
d $y=x^{\frac{1}{2}} \mathrm{e}^{2-x}$ ，
$x=1, \quad x=2$

4

The shaded region in the diagram，bounded by the curve $y=x \mathrm{e}^{-\frac{1}{2} x}$ ，the x－axis and the line $x=1$ ， is rotated through 360° about the x－axis．
Show that the volume of the solid formed is $\pi\left(2-5 \mathrm{e}^{-1}\right)$ ．

5

The diagram shows part of the curve with equation $y=2 \sin x+\cos x$ ．
The shaded region is bounded by the curve in the interval $0 \leq x<\frac{\pi}{2}$ ，the positive coordinate axes and the line $x=\frac{\pi}{2}$ ．
a Find the area of the shaded region．
b Show that the volume of the solid formed when the shaded region is rotated through 2π radians about the x－axis is $\frac{1}{4} \pi(5 \pi+8)$ ．

The diagram shows part of the curve with parametric equations

$$
x=\tan \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The shaded region is bounded by the curve，the x－axis and the line $x=1$ ．
a Write down the value of the parameter θ at the points where $x=0$ and where $x=1$ ．
The shaded region is rotated through 2π radians about the x－axis．
b Show that the volume of the solid formed is given by

$$
4 \pi \int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta \mathrm{~d} \theta
$$

c Evaluate this integral．
7

The diagram shows part of the curve with parametric equations

$$
x=t^{2}-1, \quad y=t(t+1), \quad t \geq 0 .
$$

a Find the value of the parameter t at the points where the curve meets the coordinate axes．
The shaded region bounded by the curve and the coordinate axes is rotated through 2π radians about the x－axis．
b Find the volume of the solid formed，giving your answer in terms of π ．

1 Find the general solution of each differential equation．
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=(x+2)^{3}$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \cos 2 x$
c $\frac{\mathrm{d} x}{\mathrm{~d} t}=3 \mathrm{e}^{2 t}+2$
d $(2-x) \frac{\mathrm{d} y}{\mathrm{~d} x}=1$
e $\frac{\mathrm{d} N}{\mathrm{~d} t}=t \sqrt{t^{2}+1}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{x}$

2 Find the particular solution of each differential equation．
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{-x}$ ，
$y=3$ when $x=0$
b $\frac{\mathrm{d} y}{\mathrm{~d} t}=\tan ^{3} t \sec ^{2} t, \quad y=1$ when $t=\frac{\pi}{3}$
c $\left(x^{2}-3\right) \frac{\mathrm{d} u}{\mathrm{~d} x}=4 x, \quad u=5$ when $x=2$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \cos ^{2} x, \quad y=\pi$ when $x=\frac{\pi}{2}$

3 a Express $\frac{x-8}{x^{2}-x-6}$ in partial fractions．
b Given that

$$
\left(x^{2}-x-6\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x-8
$$

and that $y=\ln 9$ when $x=1$ ，show that when $x=2$ ，the value of y is $\ln 32$ ．
4 Find the general solution of each differential equation．
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y+3$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin ^{2} 2 y$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}=x y$
d $(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}=y$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}-2}{y}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cos x \cos ^{2} y$
g $\sqrt{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{y-3}$
h $y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x y^{2}+3 x$
i $\frac{\mathrm{d} y}{\mathrm{~d} x}=x y \sin x$
j $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{2 x-y}$
$\mathbf{k}(y-3) \frac{\mathrm{d} y}{\mathrm{~d} x}=x y(y-1)$
l $\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2} \ln x$

5 Find the particular solution of each differential equation．
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{2 y}$ ，
$y=3$ when $x=4$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=(y+1)^{3}$,
$y=0$ when $x=2$
c $\left(\tan ^{2} x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=y, \quad y=1$ when $x=\frac{\pi}{2}$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+2}{x-1}$,
$y=6$ when $x=3$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} \tan y, \quad y=\frac{\pi}{6}$ when $x=0 \quad$ f $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{\frac{y}{x+3}}, \quad y=16$ when $x=1$
g $\quad \mathrm{e}^{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \operatorname{cosec} y, \quad y=\pi$ when $x=-1$
h $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+\cos y}{2 x^{2} \sin y}, \quad y=\frac{\pi}{3}$ when $x=1$

1 a Express $\frac{x+4}{(1+x)(2-x)}$ in partial fractions．
b Given that $y=2$ when $x=3$ ，solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(x+4)}{(1+x)(2-x)} .
$$

2 Given that $y=0$ when $x=0$ ，solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x+y} \cos x
$$

3 Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is inversely proportional to x and that $y=4$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{3}$ when $x=3$ ，find an expression for y in terms of x ．

4 A quantity has the value N at time t hours and is increasing at a rate proportional to N ．
a Write down a differential equation relating N and t ．
b By solving your differential equation，show that

$$
N=A \mathrm{e}^{k t},
$$

where A and k are constants and k is positive．
Given that when $t=0, N=40$ and that when $t=5, N=60$ ，
c find the values of A and k ，
d find the value of N when $t=12$ ．
5 A cube is increasing in size and has volume $V \mathrm{~cm}^{3}$ and surface area $A \mathrm{~cm}^{2}$ at time t seconds．
a Show that

$$
\frac{\mathrm{d} V}{\mathrm{~d} A}=k \sqrt{A},
$$

where k is a positive constant．
Given that the rate at which the volume of the cube is increasing is proportional to its surface area and that when $t=10, A=100$ and $\frac{\mathrm{d} A}{\mathrm{~d} t}=5$ ，
b show that

$$
A=\frac{1}{16}(t+30)^{2} .
$$

6 At time $t=0$ ，a piece of radioactive material has mass 24 g ．Its mass after t days is m grams and is decreasing at a rate proportional to m ．
a By forming and solving a suitable differential equation，show that

$$
m=24 \mathrm{e}^{-k t}
$$

where k is a positive constant．
After 20 days，the mass of the material is found to be 22.6 g ．
b Find the value of k ．
c Find the rate at which the mass is decreasing after 20 days．
d Find how long it takes for the mass of the material to be halved．
$7 \quad$ A quantity has the value P at time t seconds and is decreasing at a rate proportional to \sqrt{P} ．
a By forming and solving a suitable differential equation，show that

$$
P=(a-b t)^{2}
$$

where a and b are constants．
Given that when $t=0, P=400$ ，
b find the value of a ．
Given also that when $t=30, P=100$ ，
c find the value of P when $t=50$ ．
8

The diagram shows a container in the shape of a right－circular cone．A quantity of water is poured into the container but this then leaks out from a small hole at its vertex．
In a model of the situation it is assumed that the rate at which the volume of water in the container，$V \mathrm{~cm}^{3}$ ，decreases is proportional to V ．Given that the depth of the water is $h \mathrm{~cm}$ at time t minutes，
a show that

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-k h,
$$

where k is a positive constant．
Given also that $h=12$ when $t=0$ and that $h=10$ when $t=20$ ，
b show that

$$
h=12 \mathrm{e}^{-h t},
$$

and find the value of k ，
c find the value of t when $h=6$ ．
$9 \quad \mathbf{a}$ Express $\frac{1}{(1+x)(1-x)}$ in partial fractions．
In an industrial process，the mass of a chemical，$m \mathrm{~kg}$ ，produced after t hours is modelled by the differential equation

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=k \mathrm{e}^{-t}(1+m)(1-m),
$$

where k is a positive constant．
Given that when $t=0, m=0$ and that the initial rate at which the chemical is produced is 0.5 kg per hour，
b find the value of k ，
c show that，for $0 \leq m<1, \ln \left(\frac{1+m}{1-m}\right)=1-\mathrm{e}^{-t}$ ．
d find the time taken to produce 0.1 kg of the chemical，
e show that however long the process is allowed to run，the maximum amount of the chemical that will be produced is about 462 g ．

1 Use the trapezium rule with n intervals of equal width to estimate the value of each integral．
a $\int_{1}^{5} x \ln (x+1) \mathrm{d} x \quad n=2$
b $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x \mathrm{~d} x \quad n=2$
c $\int_{-2}^{2} \mathrm{e}^{\frac{x^{2}}{10}} \mathrm{~d} x \quad n=4$
d $\int_{0}^{1} \arccos \left(x^{2}-1\right) \mathrm{d} x \quad n=4$
e $\int_{0}^{0.5} \sec ^{2}(2 x-1) \mathrm{d} x \quad n=5$
f $\int_{0}^{6} x^{3} \mathrm{e}^{-x} \mathrm{~d} x \quad n=6$

The diagram shows the curve with equation $y=2-\operatorname{cosec} x, 0<x<\pi$ ．
a Find the exact x－coordinates of the points where the curve crosses the x－axis．
b Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region bounded by the curve and the x－axis．

$$
\mathrm{f}(x) \equiv \frac{\pi}{6}+\arcsin \left(\frac{1}{2} x\right), x \in \mathbb{R},-2 \leq x \leq 2
$$

a Use the trapezium rule with three strips to estimate the value of the integral $I=\int_{-1}^{2} \mathrm{f}(x) \mathrm{d} x$ ．
b Use the trapezium rule with six strips to find an improved estimate for I ．

The shaded region in the diagram is bounded by the curve $y=\ln x$ ，the x－axis and the line $x=5$ ．
a Estimate the area of the shaded region to 3 decimal places using the trapezium rule with
i 2 strips ii 4 strips iii 8 strips
b By considering your answers to part a，suggest a more accurate value for the area of the shaded region correct to 3 decimal places．
c Use integration to find the true value of the area correct to 3 decimal places．

The shaded region in the diagram is bounded by the curve $y=\mathrm{e}^{x}-x$ ，the coordinate axes and the line $x=-4$ ．Use the trapezium rule with five equally－spaced ordinates to estimate the volume of the solid formed when the shaded region is rotated completely about the x－axis．

