1 A curve is given by the parametric equations

$$x = t^2 + 1, y = \frac{4}{t}.$$

- **a** Write down the coordinates of the point on the curve where t = 2.
- **b** Find the value of *t* at the point on the curve with coordinates  $(\frac{5}{4}, -8)$ .
- 2 A curve is given by the parametric equations

$$x = 1 + \sin t$$
,  $y = 2\cos t$ ,  $0 \le t < 2\pi$ .

- **a** Write down the coordinates of the point on the curve where  $t = \frac{\pi}{2}$ .
- **b** Find the value of t at the point on the curve with coordinates  $(\frac{3}{2}, -\sqrt{3})$ .
- 3 Find a cartesian equation for each curve, given its parametric equations.
  - **a** x = 3t,  $y = t^2$  **b** x = 2t,  $y = \frac{1}{t}$  **c**  $x = t^3$ ,  $y = 2t^2$  **d**  $x = 1 - t^2$ , y = 4 - t **e** x = 2t - 1,  $y = \frac{2}{t^2}$ **f**  $x = \frac{1}{t-1}$ ,  $y = \frac{1}{2-t}$
- 4 A curve has parametric equations

$$x = 2t + 1, \quad y = t^2$$

- **a** Find a cartesian equation for the curve.
- **b** Hence, sketch the curve.
- 5 Find a cartesian equation for each curve, given its parametric equations.
  - **a**  $x = \cos \theta$ ,  $y = \sin \theta$  **b**  $x = \sin \theta$ ,  $y = \cos 2\theta$  **c**  $x = 3 + 2\cos \theta$ ,  $y = 1 + 2\sin \theta$  **d**  $x = 2 \sec \theta$ ,  $y = 4 \tan \theta$  **e**  $x = \sin \theta$ ,  $y = \sin^2 2\theta$ **f**  $x = \cos \theta$ ,  $y = \tan^2 \theta$
- 6 A circle has parametric equations

$$x = 1 + 3\cos\theta$$
,  $y = 4 + 3\sin\theta$ ,  $0 \le \theta < 2\pi$ .

- **a** Find a cartesian equation for the circle.
- **b** Write down the coordinates of the centre and the radius of the circle.
- c Sketch the circle and label the points on the circle where  $\theta$  takes each of the following values:

 $0, \ \frac{\pi}{4}, \ \frac{\pi}{2}, \ \frac{3\pi}{4}, \ \pi, \ \frac{5\pi}{4}, \ \frac{3\pi}{2}, \ \frac{7\pi}{4}.$ 

- 7 Write down parametric equations for a circle
  - a centre (0, 0), radius 5,
  - **b** centre (6, -1), radius 2,
  - **c** centre (a, b), radius r, where a, b and r are constants and r > 0.
- 8 For each curve given by parametric equations, find a cartesian equation and hence, sketch the curve, showing the coordinates of any points where it meets the coordinate axes.

**a** x = 2t, y = 4t(t-1) **b**  $x = 1 - \sin \theta$ ,  $y = 2 - \cos \theta$ ,  $0 \le \theta < 2\pi$  **c** x = t - 3,  $y = 4 - t^2$ **d** x = t + 1,  $y = \frac{2}{t}$ 



书山有路勤为径,学海无涯苦作舟。

www.CasperYC.club

C2

1 A curve is given by the parametric equations

 $x = 2 + t, \quad y = t^{2} - 1.$  **a** Write down expressions for  $\frac{dx}{dt}$  and  $\frac{dy}{dt}$ . **b** Hence, show that  $\frac{dy}{dt} = 2t$ .

**b** Hence, show that  $\frac{dx}{dx} = 2t$ .

2 Find and simplify an expression for  $\frac{dy}{dx}$  in terms of the parameter *t* in each case.

- **a**  $x = t^2$ , y = 3t **b**  $x = t^2 - 1$ ,  $y = 2t^3 + t^2$  **c**  $x = 2 \sin t$ ,  $y = 6 \cos t$  **d** x = 3t - 1,  $y = 2 - \frac{1}{t}$  **e**  $x = \cos 2t$ ,  $y = \sin t$  **f**  $x = e^{t+1}$ ,  $y = e^{2t-1}$  **g**  $x = \sin^2 t$ ,  $y = \cos^3 t$  **h**  $x = 3 \sec t$ ,  $y = 5 \tan t$ **i**  $x = \frac{1}{t+1}$ ,  $y = \frac{t}{t-1}$
- 3 Find, in the form y = mx + c, an equation for the tangent to the given curve at the point with the given value of the parameter *t*.

**a** 
$$x = t^3$$
,  $y = 3t^2$ ,  $t = 1$   
**b**  $x = 1 - t^2$ ,  $y = 2t - t^2$ ,  $t = 2$   
**c**  $x = 2 \sin t$ ,  $y = 1 - 4 \cos t$ ,  $t = \frac{\pi}{3}$   
**d**  $x = \ln (4 - t)$ ,  $y = t^2 - 5$ ,  $t = 3$ 

4 Show that the normal to the curve with parametric equations

$$x = \sec \theta, \ y = 2 \tan \theta, \ 0 \le \theta < \frac{\pi}{2},$$

at the point where  $\theta = \frac{\pi}{3}$ , has the equation

$$\sqrt{3}x + 4y = 10\sqrt{3}.$$

5 A curve is given by the parametric equations

$$x = \frac{1}{t}, \quad y = \frac{1}{t+2}.$$

- **a** Show that  $\frac{dy}{dx} = \left(\frac{t}{t+2}\right)^2$ .
- **b** Find an equation for the normal to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- 6 A curve has parametric equations

$$x = \sin 2t, \quad y = \sin^2 t, \quad 0 \le t < \pi.$$

**a** Show that  $\frac{dy}{dx} = \frac{1}{2} \tan 2t$ .

**b** Find an equation for the tangent to the curve at the point where  $t = \frac{\pi}{6}$ .

7 A curve has parametric equations

$$x = 3\cos\theta, y = 4\sin\theta, 0 \le \theta < 2\pi.$$

**a** Show that the tangent to the curve at the point  $(3 \cos \alpha, 4 \sin \alpha)$  has the equation

 $3y\sin\alpha + 4x\cos\alpha = 12.$ 

**b** Hence find an equation for the tangent to the curve at the point  $\left(-\frac{3}{2}, 2\sqrt{3}\right)$ .



8 A curve is given by the parametric equations

$$x = t^2$$
,  $y = t(t - 2)$ ,  $t \ge 0$ .

- **a** Find the coordinates of any points where the curve meets the coordinate axes.
- **b** Find  $\frac{dy}{dx}$  in terms of x
  - **i** by first finding  $\frac{dy}{dx}$  in terms of *t*,
  - ii by first finding a cartesian equation for the curve.





The diagram shows the ellipse with parametric equations

$$x = 1 - 2\cos\theta, y = 3\sin\theta, 0 \le \theta < 2\pi$$

- **a** Find  $\frac{dy}{dx}$  in terms of  $\theta$ .
- **b** Find the coordinates of the points where the tangent to the curve is
  - i parallel to the x-axis,
  - ii parallel to the y-axis.
- 10 A curve is given by the parametric equations

 $x = \sin \theta$ ,  $y = \sin 2\theta$ ,  $0 \le \theta \le \frac{\pi}{2}$ .

- **a** Find the coordinates of any points where the curve meets the coordinate axes.
- **b** Find an equation for the tangent to the curve that is parallel to the *x*-axis.
- **c** Find a cartesian equation for the curve in the form y = f(x).
- 11 A curve has parametric equations

$$x = \sin^2 t$$
,  $y = \tan t$ ,  $-\frac{\pi}{2} < t < \frac{\pi}{2}$ .

- **a** Show that the tangent to the curve at the point where  $t = \frac{\pi}{4}$  passes through the origin.
- **b** Find a cartesian equation for the curve in the form  $y^2 = f(x)$ .
- 12 A curve is given by the parametric equations

$$x = t + \frac{1}{t}, y = t - \frac{1}{t}, t \neq 0$$

- **a** Find an equation for the tangent to the curve at the point *P* where t = 3.
- **b** Show that the tangent to the curve at P does not meet the curve again.
- c Show that the cartesian equation of the curve can be written in the form

$$x^2 - y^2 = k,$$

where *k* is a constant to be found.

www.CasperYC.club



С4

| 1  | Differentiate with resp                                                                                                       | ect to x                                         |                                    |                                            |
|----|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|--------------------------------------------|
|    | <b>a</b> 4 <i>y</i>                                                                                                           | <b>b</b> $y^3$                                   | $\mathbf{c}  \sin 2y$              | <b>d</b> $3e^{y^2}$                        |
| 2  | Find $\frac{dy}{dx}$ in terms of x and y in each case.                                                                        |                                                  |                                    |                                            |
|    | $\mathbf{a}  x^2 + y^2 = 2$                                                                                                   | <b>b</b> $2x - y + y^2$                          | = 0 c                              | $y^4 = x^2 - 6x + 2$                       |
|    | <b>d</b> $x^2 + y^2 + 3x - 4y = 9$                                                                                            | <b>e</b> $x^2 - 2y^2 + x$                        | $x + 3y - 4 = 0 \qquad \mathbf{f}$ | $\sin x + \cos y = 0$                      |
|    | $\mathbf{g}  2e^{3x} + e^{-2y} + 7 = 0$                                                                                       | <b>h</b> $\tan x + \cos \theta$                  | ec $2y = 1$ i                      | $\ln (x - 2) = \ln (2y + 1)$               |
| 3  | Differentiate with respect to x                                                                                               |                                                  |                                    |                                            |
|    | <b>a</b> xy                                                                                                                   | <b>b</b> $x^2y^3$                                | <b>c</b> $\sin x \tan y$           | <b>d</b> $(x-2y)^3$                        |
| 4  | Find $\frac{dy}{dx}$ in terms of x and y in each case.                                                                        |                                                  |                                    |                                            |
|    | <b>a</b> $x^2y = 2$                                                                                                           | <b>b</b> $x^2 + 3xy - y$                         | $v^2 = 0 \qquad \mathbf{c}$        | $4x^2 - 2xy + 3y^2 = 8$                    |
|    | $\mathbf{d}  \cos 2x \sec 3y + 1 =$                                                                                           | 0 <b>e</b> $y = (x + y)^2$                       | f                                  | $xe^{v} - y = 5$                           |
|    | $\mathbf{g}  2xy^2 - x^3y = 0$                                                                                                | <b>h</b> $y^2 + x \ln y =$                       | = 3 i                              | $x\sin y + x^2\cos y = 1$                  |
| 5  | Find an equation for the tangent to each curve at the given point on the curve.                                               |                                                  |                                    |                                            |
|    | <b>a</b> $x^2 + y^2 - 3y - 2 = 0$                                                                                             | (2, 1)                                           | $\mathbf{b}  2x^2 - xy + y^2 =$    | 28, (3, 5)                                 |
|    | $\mathbf{c}  4\sin y - \sec x = 0,$                                                                                           | $\left(\frac{\pi}{3},\frac{\pi}{6}\right)$       | <b>d</b> $2 \tan x \cos y =$       | $1, \qquad (\frac{\pi}{4}, \frac{\pi}{3})$ |
| 6  | A curve has the equation $x^2 + 2y^2 - x + 4y = 6$ .                                                                          |                                                  |                                    |                                            |
|    | <b>a</b> Show that $\frac{dy}{dx} = \frac{1-2x}{4(y+1)}$ .                                                                    |                                                  |                                    |                                            |
|    | <b>b</b> Find an equation fo                                                                                                  | the normal to the curve at the point $(1, -3)$ . |                                    |                                            |
| 7  | A curve has the equation $r^2 + 4ry - 3y^2 = 36$                                                                              |                                                  |                                    |                                            |
|    | <b>a</b> Find an equation for the tangent to the curve at the point P (4, 2).                                                 |                                                  |                                    |                                            |
|    | Given that the tangent to the curve at the point $Q$ on the curve is parallel to the tangent at $P$ ,                         |                                                  |                                    |                                            |
|    | <b>b</b> find the coordinates                                                                                                 | s of <i>Q</i> .                                  |                                    |                                            |
| 8  | A curve has the equation $y = a^x$ , where <i>a</i> is a positive constant.                                                   |                                                  |                                    |                                            |
|    | By first taking logarithms, find an expression for $\frac{dy}{dx}$ in terms of <i>a</i> and <i>x</i> .                        |                                                  |                                    |                                            |
| 9  | Differentiate with respect to x                                                                                               |                                                  |                                    |                                            |
|    | <b>a</b> $3^x$                                                                                                                | <b>b</b> $6^{2x}$                                | <b>c</b> $5^{1-x}$                 | <b>d</b> $2^{x^3}$                         |
| 10 | A biological culture is growing exponentially such that the number of bacteria present, $N$ , at time $t$ minutes is given by |                                                  |                                    |                                            |

 $N = 800(1.04)^{t}$ .

Find the rate at which the number of bacteria is increasing when there are 4000 bacteria present.



1 Given that  $y = x^2 + 3x + 5$ , and that  $x = (t-4)^3$ ,

**a** find expressions for

i 
$$\frac{dy}{dx}$$
 in terms of x, ii  $\frac{dx}{dt}$  in terms of t,

- **b** find the value of  $\frac{dy}{dt}$  when
  - **i** t = 5, **ii** x = 8.
- 2 The variables x and y are related by the equation  $y = x\sqrt{2x-3}$ . Given that x is increasing at the rate of 0.3 units per second when x = 6, find the rate at which y is increasing at this instant.
- 3 The radius of a circle is increasing at a constant rate of  $0.2 \text{ cm s}^{-1}$ .
  - **a** Show that the perimeter of the circle is increasing at the rate of  $0.4\pi$  cm s<sup>-1</sup>.
  - **b** Find the rate at which the area of the circle is increasing when the radius is 10 cm.
  - **c** Find the radius of the circle when its area is increasing at the rate of  $20 \text{ cm}^2 \text{ s}^{-1}$ .
- 4 The area of a circle is decreasing at a constant rate of  $0.5 \text{ cm}^2 \text{ s}^{-1}$ .
  - **a** Find the rate at which the radius of the circle is decreasing when the radius is 8 cm.
  - **b** Find the rate at which the perimeter of the circle is decreasing when the radius is 8 cm.
- 5 The volume of a cube is increasing at a constant rate of  $3.5 \text{ cm}^3 \text{ s}^{-1}$ . Find
  - **a** the rate at which the length of one side of the cube is increasing when the volume is  $200 \text{ cm}^3$ ,
  - **b** the volume of the cube when the length of one side is increasing at the rate of  $2 \text{ mm s}^{-1}$ .

The diagram shows the cross-section of a right-circular paper cone being used as a filter funnel. The volume of liquid in the funnel is  $V \text{ cm}^3$  when the depth of the liquid is *h* cm.

Given that the angle between the sides of the funnel in the cross-section is 60° as shown,

h cm

**a** show that  $V = \frac{1}{9}\pi h^3$ .

Given also that at time t seconds after liquid is put in the funnel

 $V = 600 \mathrm{e}^{-0.0005t}$ 

- **b** show that after two minutes, the depth of liquid in the funnel is approximately 11.7 cm,
- c find the rate at which the depth of liquid is decreasing after two minutes.

www.CasperYC.club

6