1 A curve is given by the parametric equations

$$
x=t^{2}+1, y=\frac{4}{t} .
$$

a Write down the coordinates of the point on the curve where $t=2$ ．
b Find the value of t at the point on the curve with coordinates $\left(\frac{5}{4},-8\right)$ ．
2 A curve is given by the parametric equations

$$
x=1+\sin t, \quad y=2 \cos t, \quad 0 \leq t<2 \pi .
$$

a Write down the coordinates of the point on the curve where $t=\frac{\pi}{2}$ ．
b Find the value of t at the point on the curve with coordinates $\left(\frac{3}{2},-\sqrt{3}\right)$ ．
3 Find a cartesian equation for each curve，given its parametric equations．
a $x=3 t, y=t^{2}$
b $x=2 t, y=\frac{1}{t}$
c $x=t^{3}, y=2 t^{2}$
d $x=1-t^{2}, \quad y=4-t$
e $x=2 t-1, y=\frac{2}{t^{2}}$
f $x=\frac{1}{t-1}, y=\frac{1}{2-t}$

4 A curve has parametric equations

$$
x=2 t+1, \quad y=t^{2} .
$$

a Find a cartesian equation for the curve．
b Hence，sketch the curve．
5 Find a cartesian equation for each curve，given its parametric equations．
a $x=\cos \theta, \quad y=\sin \theta$
b $x=\sin \theta, y=\cos 2 \theta$
c $x=3+2 \cos \theta, y=1+2 \sin t$
d $x=2 \sec \theta, y=4 \tan \theta$
e $x=\sin \theta, y=\sin ^{2} 2 \theta$
f $x=\cos \theta, y=\tan ^{2} \theta$

6 A circle has parametric equations

$$
x=1+3 \cos \theta, \quad y=4+3 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

a Find a cartesian equation for the circle．
b Write down the coordinates of the centre and the radius of the circle．
c Sketch the circle and label the points on the circle where θ takes each of the following values：

$$
0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4} .
$$

7 Write down parametric equations for a circle
a centre $(0,0)$ ，radius 5 ，
b centre $(6,-1)$ ，radius 2 ，
c centre (a, b) ，radius r ，where a, b and r are constants and $r>0$ ．
8 For each curve given by parametric equations，find a cartesian equation and hence，sketch the curve，showing the coordinates of any points where it meets the coordinate axes．
a $x=2 t, \quad y=4 t(t-1)$
b $x=1-\sin \theta, \quad y=2-\cos \theta, \quad 0 \leq \theta<2 \pi$
c $x=t-3, y=4-t^{2}$
d $x=t+1, \quad y=\frac{2}{t}$

1 A curve is given by the parametric equations

$$
x=2+t, \quad y=t^{2}-1 .
$$

a Write down expressions for $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$ ．
b Hence，show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t$ ．
2 Find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of the parameter t in each case．
a $x=t^{2}, y=3 t$
b $x=t^{2}-1, y=2 t^{3}+t^{2}$
c $x=2 \sin t, y=6 \cos t$
d $x=3 t-1, y=2-\frac{1}{t}$
e $x=\cos 2 t, y=\sin t$
f $x=\mathrm{e}^{t+1}, y=\mathrm{e}^{2 t-1}$
g $x=\sin ^{2} t, \quad y=\cos ^{3} t$
h $x=3 \sec t, y=5 \tan t$
i $x=\frac{1}{t+1}, y=\frac{t}{t-1}$

3 Find，in the form $y=m x+c$ ，an equation for the tangent to the given curve at the point with the given value of the parameter t ．
a $x=t^{3}, y=3 t^{2}$ ，
$t=1$
b $x=1-t^{2}, \quad y=2 t-t^{2}, \quad t=2$
c $x=2 \sin t, y=1-4 \cos t, \quad t=\frac{\pi}{3}$
d $x=\ln (4-t), y=t^{2}-5, \quad t=3$

4 Show that the normal to the curve with parametric equations

$$
x=\sec \theta, \quad y=2 \tan \theta, \quad 0 \leq \theta<\frac{\pi}{2},
$$

at the point where $\theta=\frac{\pi}{3}$ ，has the equation

$$
\sqrt{3} x+4 y=10 \sqrt{3} .
$$

5 A curve is given by the parametric equations

$$
x=\frac{1}{t}, y=\frac{1}{t+2} .
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{t}{t+2}\right)^{2}$ ．
b Find an equation for the normal to the curve at the point where $t=2$ ，giving your answer in the form $a x+b y+c=0$ ，where a, b and c are integers．

6 A curve has parametric equations

$$
x=\sin 2 t, \quad y=\sin ^{2} t, \quad 0 \leq t<\pi .
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \tan 2 t$ ．
b Find an equation for the tangent to the curve at the point where $t=\frac{\pi}{6}$ ．
7 A curve has parametric equations

$$
x=3 \cos \theta, \quad y=4 \sin \theta, \quad 0 \leq \theta<2 \pi
$$

a Show that the tangent to the curve at the point $(3 \cos \alpha, 4 \sin \alpha)$ has the equation
$3 y \sin \alpha+4 x \cos \alpha=12$.
b Hence find an equation for the tangent to the curve at the point $\left(-\frac{3}{2}, 2 \sqrt{3}\right)$ ．

8 A curve is given by the parametric equations

$$
x=t^{2}, \quad y=t(t-2), \quad t \geq 0
$$

a Find the coordinates of any points where the curve meets the coordinate axes．
b Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x
i by first finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t ，
ii by first finding a cartesian equation for the curve．

The diagram shows the ellipse with parametric equations

$$
x=1-2 \cos \theta, \quad y=3 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ ．
b Find the coordinates of the points where the tangent to the curve is
i parallel to the x－axis，
ii parallel to the y－axis．
10 A curve is given by the parametric equations

$$
x=\sin \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

a Find the coordinates of any points where the curve meets the coordinate axes．
b Find an equation for the tangent to the curve that is parallel to the x－axis．
c Find a cartesian equation for the curve in the form $y=\mathrm{f}(x)$ ．
11 A curve has parametric equations

$$
x=\sin ^{2} t, \quad y=\tan t,-\frac{\pi}{2}<t<\frac{\pi}{2} .
$$

a Show that the tangent to the curve at the point where $t=\frac{\pi}{4}$ passes through the origin．
b Find a cartesian equation for the curve in the form $y^{2}=\mathrm{f}(x)$ ．
12 A curve is given by the parametric equations

$$
x=t+\frac{1}{t}, \quad y=t-\frac{1}{t}, \quad t \neq 0
$$

a Find an equation for the tangent to the curve at the point P where $t=3$ ．
b Show that the tangent to the curve at P does not meet the curve again．
c Show that the cartesian equation of the curve can be written in the form

$$
x^{2}-y^{2}=k,
$$

where k is a constant to be found．

1 Differentiate with respect to x
a $4 y$
b y^{3}
c $\sin 2 y$
d $3 \mathrm{e}^{y^{2}}$

2 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y in each case．
a $x^{2}+y^{2}=2$
b $2 x-y+y^{2}=0$
c $y^{4}=x^{2}-6 x+2$
d $x^{2}+y^{2}+3 x-4 y=9$
e $x^{2}-2 y^{2}+x+3 y-4=0$
f $\sin x+\cos y=0$
g $2 \mathrm{e}^{3 x}+\mathrm{e}^{-2 y}+7=0$
h $\tan x+\operatorname{cosec} 2 y=1$
i $\ln (x-2)=\ln (2 y+1)$

3 Differentiate with respect to x
a $x y$
b $x^{2} y^{3}$
c $\sin x \tan y$
d $(x-2 y)^{3}$

4 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y in each case．
a $x^{2} y=2$
b $x^{2}+3 x y-y^{2}=0$
c $4 x^{2}-2 x y+3 y^{2}=8$
d $\cos 2 x \sec 3 y+1=0$
e $y=(x+y)^{2}$
f $x \mathrm{e}^{y}-y=5$
g $2 x y^{2}-x^{3} y=0$
h $y^{2}+x \ln y=3$
i $x \sin y+x^{2} \cos y=1$

5 Find an equation for the tangent to each curve at the given point on the curve．
a $x^{2}+y^{2}-3 y-2=0$ ，
$(2,1)$
b $2 x^{2}-x y+y^{2}=28$ ，
c $4 \sin y-\sec x=0$ ，
$\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$
d $2 \tan x \cos y=1$ ，
$\left(\frac{\pi}{4}, \frac{\pi}{3}\right)$

6 A curve has the equation $x^{2}+2 y^{2}-x+4 y=6$ ．
a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-2 x}{4(y+1)}$ ．
b Find an equation for the normal to the curve at the point $(1,-3)$ ．
7 A curve has the equation $x^{2}+4 x y-3 y^{2}=36$ ．
a Find an equation for the tangent to the curve at the point $P(4,2)$ ．
Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P ，
b find the coordinates of Q ．
8 A curve has the equation $y=a^{x}$ ，where a is a positive constant．
By first taking logarithms，find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of a and x ．
9 Differentiate with respect to x
a 3^{x}
b $6^{2 x}$
c 5^{1-x}
d $2^{x^{3}}$

10 A biological culture is growing exponentially such that the number of bacteria present，N ，at time t minutes is given by

$$
N=800(1.04)^{t} .
$$

Find the rate at which the number of bacteria is increasing when there are 4000 bacteria present．

1 Given that $y=x^{2}+3 x+5$ ， and that $\quad x=(t-4)^{3}$ ，
a find expressions for
i $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x, \quad ii $\frac{\mathrm{d} x}{\mathrm{~d} t}$ in terms of t,
b find the value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ when
i $t=5$ ，
ii $x=8$ ．

2 The variables x and y are related by the equation $y=x \sqrt{2 x-3}$ ．
Given that x is increasing at the rate of 0.3 units per second when $x=6$ ，find the rate at which y is increasing at this instant．

3 The radius of a circle is increasing at a constant rate of $0.2 \mathrm{~cm} \mathrm{~s}^{-1}$ ．
a Show that the perimeter of the circle is increasing at the rate of $0.4 \pi \mathrm{~cm} \mathrm{~s}^{-1}$ ．
b Find the rate at which the area of the circle is increasing when the radius is 10 cm ．
c Find the radius of the circle when its area is increasing at the rate of $20 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ ．
4 The area of a circle is decreasing at a constant rate of $0.5 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ ．
a Find the rate at which the radius of the circle is decreasing when the radius is 8 cm ．
b Find the rate at which the perimeter of the circle is decreasing when the radius is 8 cm ．
5 The volume of a cube is increasing at a constant rate of $3.5 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ ．Find
a the rate at which the length of one side of the cube is increasing when the volume is $200 \mathrm{~cm}^{3}$ ，
b the volume of the cube when the length of one side is increasing at the rate of $2 \mathrm{~mm} \mathrm{~s}^{-1}$ ．
6

The diagram shows the cross－section of a right－circular paper cone being used as a filter funnel．
The volume of liquid in the funnel is $V \mathrm{~cm}^{3}$ when the depth of the liquid is $h \mathrm{~cm}$ ．
Given that the angle between the sides of the funnel in the cross－section is 60° as shown，
a show that $V=\frac{1}{9} \pi h^{3}$ ．
Given also that at time t seconds after liquid is put in the funnel

$$
V=600 \mathrm{e}^{-0.0005 t}
$$

b show that after two minutes，the depth of liquid in the funnel is approximately 11.7 cm ，
c find the rate at which the depth of liquid is decreasing after two minutes．

