C3 EXPONENTIALS AND LOGARITHMS

1 Find，to 3 significant figures，the value of
a e^{3}
b e^{-2}
c 5 e
d $\ln 0.55$
e $\frac{3}{7} \ln 100$
f $\log _{10} \mathrm{e}$

2 Without using a calculator，find the value of
a $e^{\ln 4}$
b $\mathrm{e}^{\frac{1}{2} \ln 9}$
c $2 \mathrm{e}^{-\ln 6}$
d $\ln \mathrm{e}^{7}$
e $\ln \frac{1}{\mathrm{e}}$
f $5 \ln \mathrm{e}^{-0.1}$

3 Find the value of x in each case．
a $\mathrm{e}^{\ln x}=4$
b $\ln \mathrm{e}^{x}=17$
c $\mathrm{e}^{2 \ln x}=25$
d $\mathrm{e}^{-\ln x}=\frac{1}{3}$

4 Solve each equation，giving your answers in terms of e．
a $\ln x=15$
b $\frac{1}{2} \ln t-3=0$
c $\ln (x-4)=7$
d $17-\ln 5 y=9$
e $\ln \left(\frac{1}{2} x+3\right)=2.5$
f $\ln (4-3 x)-11=0$

5 Solve each equation，giving your answers in terms of natural logarithms．
a $\mathrm{e}^{x}=0.7$
b $9-2 \mathrm{e}^{y}=5$
c $\mathrm{e}^{5 x}-3=0$
d $\mathrm{e}^{4 t+1}=12$
e $\frac{1}{2} \mathrm{e}^{2 x-3}-7=0$
f $2 \mathrm{e}^{4-5 x}+9=16$

6 Solve each equation，giving your answers to 2 decimal places．
a $\frac{1}{3} \mathrm{e}^{x}=4$
b $\ln (15 x-7)=4$
c $4 \mathrm{e}^{\frac{1}{2} y+3}=11$
d $\frac{3}{7} \ln (5-2 x)-1=0$
e $\ln (10-3 y)-\mathrm{e}=0$
f $\ln x^{2}+\ln x^{3}=19$
g $\mathrm{e}^{2 x}=3 \mathrm{e}^{-\frac{1}{4} x}$
h $\mathrm{e}^{5 t}=4 \mathrm{e}^{2 t+1}$
i $\ln (2 x-5)-\ln x=\frac{1}{4}$

7 Find，in exact form，the solutions to the equation

$$
2 \mathrm{e}^{2 x}+12=11 \mathrm{e}^{x} .
$$

8 a Simplify

$$
\frac{3 x^{2}-10 x+8}{x^{2}-5 x+6}
$$

b Hence，solve the equation

$$
\ln \left(3 x^{2}-10 x+8\right)-\ln \left(x^{2}-5 x+6\right)=\ln 2 x .
$$

9 Solve the following simultaneous equations，giving your answers to 2 decimal places．

$$
\begin{aligned}
& \mathrm{e}^{5 y}-x=0 \\
& \ln x^{4}=7-y
\end{aligned}
$$

10 Sketch each pair of curves on the same diagram，showing the coordinates of any points of intersection with the coordinate axes．
a $y=\mathrm{e}^{x}$
$y=\mathrm{e}^{-2 x}$
b $y=2 \mathrm{e}^{x}$ $y=\mathrm{e}^{x-1}$
c $\begin{aligned} y & =2+\mathrm{e}^{x} \\ y & =\mathrm{e}^{2 x+1}\end{aligned}$
d $y=\mathrm{e}^{x}$
$y=\ln x$
e $y=-\ln x$
$y=2+\ln x$
f $y=\ln (x-2)$
$y=\ln 3 x$

11 a Sketch on the same diagram the curves $y=\ln (x+1)$ and $y=1+\ln x$ ．
b Show that the x－coordinate of the point where the two curves intersect is $\frac{1}{\mathrm{e}-1}$ ．
12

The diagram shows the curve with the equation $y=3+\mathrm{e}^{2 x-1}$ and the asymptote of the curve which has the equation $y=c$ ．
a State the value of the constant c ．
b Find the exact coordinates of the point where the curve crosses the y－axis．
c Find the x－coordinate of the point on the curve where $y=7$ ，giving your answer in the form $a+\ln b$ ，where a is rational and b is an integer．

13 A quantity N is decreasing such that at time t

$$
N=50 \mathrm{e}^{-0.2 t} .
$$

a Find the value of N when $t=10$ ．
b Find the value of t when $N=3$ ．
14 A radioactive substance is decaying such that its mass，m grams，at a time t years after initial observation is given by

$$
m=240 \mathrm{e}^{k t},
$$

where k is a constant．
Given that when $t=180, m=160$ ，find
a the value of k ，
b the time it takes for the mass of the substance to be halved．
15 A quantity N is increasing such that at time t

$$
N=20 \mathrm{e}^{0.04 t} .
$$

a Find the value of N when $t=15$ ．
b Find，in terms of the constant k ，expressions for the value of t when
i $N=k$ ，
ii $N=2 k$ ．
c Hence，show that the time it takes for the value of N to double is constant．
16 A quantity N is decreasing such that at time t

$$
N=N_{0} \mathrm{e}^{k t} .
$$

Given that at time $t=10, N=300$ and that at time $t=20, N=225$ ，find
a the values of the constants N_{0} and k ，
b the value of t when $N=150$ ．

