1 Differentiate with respect to x
a e^{x}
b $3 \mathrm{e}^{x}$
c $\ln x$
d $\frac{1}{2} \ln x$

2 Differentiate with respect to t
a $7-2 \mathrm{e}^{t}$
b $3 t^{2}+\ln t$
c $\mathrm{e}^{t}+t^{5}$
d $t^{\frac{3}{2}}+2 \mathrm{e}^{t}$
e $2 \ln t+\sqrt{t}$
f $2.5 \mathrm{e}^{t}-3.5 \ln t$
g $\frac{1}{t}+8 \ln t$
h $7 t^{2}-2 t+4 \mathrm{e}^{t}$

3 Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for each of the following．
a $y=4 x^{3}+\mathrm{e}^{x}$
b $y=7 \mathrm{e}^{x}-5 x^{2}+3 x$
c $y=\ln x+x^{\frac{5}{2}}$
d $y=5 \mathrm{e}^{x}+6 \ln x$
e $y=\frac{3}{x}+3 \ln x$
f $y=4 \sqrt{x}+\frac{1}{4} \ln x$

4 Find the value of $\mathrm{f}^{\prime}(x)$ at the value of x indicated in each case．
a $\mathrm{f}(x)=3 x+\mathrm{e}^{x}$ ，
$x=0$
b $\mathrm{f}(x)=\ln x-x^{2}$,
$x=4$
c $\mathrm{f}(x)=x^{\frac{1}{2}}+2 \ln x, \quad x=9$
d $\mathrm{f}(x)=5 \mathrm{e}^{x}+\frac{1}{x^{2}}$,
$x=-\frac{1}{2}$

5 Find，in each case，any values of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ ．
a $y=5 \ln x-8 x$
b $y=2.4 \mathrm{e}^{x}-3.6 x$
c $y=3 x^{2}-14 x+4 \ln x$

6 Find the value of x for which $\mathrm{f}^{\prime}(x)$ takes the value indicated in each case．
a $\mathrm{f}(x)=2 \mathrm{e}^{x}-3 x$ ，
$\mathrm{f}^{\prime}(x)=7$
b $\mathrm{f}(x)=15 x+\ln x$,
$\mathrm{f}^{\prime}(x)=23$
c $\mathrm{f}(x)=\frac{x^{2}}{8}-2 x+\ln x$,
$\mathrm{f}^{\prime}(x)=-1$
d $\mathrm{f}(x)=30 \ln x-x^{2}$,
$\mathrm{f}^{\prime}(x)=4$

7 Find the coordinates and the nature of any stationary points on each of the following curves．
a $y=\mathrm{e}^{x}-2 x$
b $y=\ln x-10 x$
c $y=2 \ln x-\sqrt{x}$
d $y=4 x-5 \mathrm{e}^{x}$
e $y=7+2 x-4 \ln x$
f $y=x^{2}-26 x+72 \ln x$

8 Given that $y=x+k \mathrm{e}^{x}$ ，where k is a constant，show that

$$
(1-x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=0
$$

9 Find an equation for the tangent to each curve at the point on the curve with the given x－coordinat
a $y=\mathrm{e}^{x}$ ，
$x=2$
b $y=\ln x$ ，
$x=3$
c $y=0.8 x-2 \mathrm{e}^{x}$ ，
$x=0$
d $y=5 \ln x+\frac{4}{x}, \quad x=1$
e $y=x^{\frac{1}{3}}-3 \mathrm{e}^{x}$ ，
$x=1$
f $y=\ln x-\sqrt{x}$ ，
$x=9$

10 Find an equation for the normal to each curve at the point on the curve with the given x－coordinats
a $y=\ln x$ ，
$x=\mathrm{e}$
b $y=4+3 \mathrm{e}^{x}$ ，
$x=0$
c $y=10+\ln x, \quad x=3$
d $y=3 \ln x-2 x$ ，
$x=1$
e $y=x^{2}+8 \ln x$ ，
$x=1$
f $y=\frac{1}{10} x-\frac{3}{10} \mathrm{e}^{x}-1, x=0$

C3 Differentiation

1 a Find an equation for the normal to the curve $y=\frac{2}{5} x+\frac{1}{10} \mathrm{e}^{x}$ at the point on the curve where $x=0$ ，giving your answer in the form $a x+b y+c=0$ ，where a, b and c are integers．
b Find the coordinates of the point where this normal crosses the x－axis．

The diagram shows the curve with equation $y=5 \mathrm{e}^{x}-3 \ln x$ and the tangent to the curve at the point P with x－coordinate 1 ．
a Show that the tangent at P has equation $y=(5 \mathrm{e}-3) x+3$ ．
The tangent at P meets the y－axis at Q ．
The line through P parallel to the y－axis meets the x－axis at R ．
b Find the area of trapezium $O R P Q$ ，giving your answer in terms of e．
3 A curve has equation $y=3 x-\frac{1}{2} \mathrm{e}^{x}$ ．
a Find the coordinates of the stationary point on the curve，giving your answers in terms of natural logarithms．
b Determine the nature of the stationary point．

The diagram shows the curve $y=6 \ln x-4 x^{\frac{1}{2}}$ ．The x－coordinate of the point P on the curve is 4 ． The tangent to the curve at P meets the x－axis at Q and the y－axis at R ．
a Find an equation for the tangent to the curve at P ．
b Hence，show that the area of triangle $O Q R$ is $(10-12 \ln 2)^{2}$ ．
5 The curve with equation $y=2 x-2-\ln x$ passes through the point $A(1,0)$ ．The tangent to the curve at A crosses the y－axis at B and the normal to the curve at A crosses the y－axis at C ．
a Find an equation for the tangent to the curve at A ．
b Show that the mid－point of $B C$ is the origin．
The curve has a minimum point at D ．
c Show that the y－coordinate of D is $\ln 2-1$ ．

6 a Sketch the curve with equation $y=\mathrm{e}^{x}+k$ ，where k is a positive constant．
Show on your sketch the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes．
b Find an equation for the tangent to the curve at the point on the curve where $x=2$ ．
Given that the tangent passes through the x－axis at the point $(-1,0)$ ，
c show that $k=2 \mathrm{e}^{2}$ ．
7 A curve has equation $y=3 x^{2}-2 \ln x, x>0$ ．
The gradient of the curve at the point P on the curve is -1 ．
a Find the x－coordinate of P ．
b Find an equation for the tangent to the curve at the point on the curve where $x=1$ ．
8

The diagram shows the curve with equation $y=\mathrm{e}^{x}$ which passes through the point $P\left(p, \mathrm{e}^{p}\right)$ ． Given that the tangent to the curve at P passes through the origin and that the normal to the curve at P meets the x－axis at Q ，
a show that $p=1$ ，
b show that the area of triangle $O P Q$ ，where O is the origin，is $\frac{1}{2} \mathrm{e}\left(1+\mathrm{e}^{2}\right)$ ．
9 The curve with equation $y=4-\mathrm{e}^{x}$ meets the y－axis at the point P and the x－axis at the point Q ．
a Find an equation for the normal to the curve at P ．
b Find an equation for the tangent to the curve at Q ．
The normal to the curve at P meets the tangent to the curve at Q at the point R ．
The x－coordinate of R is $a \ln 2+b$ ，where a and b are rational constants．
c Show that $a=\frac{8}{5}$ ．
d Find the value of b ．
10

The diagram shows a sketch of the curve $y=\mathrm{f}(x)$ where

$$
\mathrm{f}: x \rightarrow 9 x^{4}-16 \ln x, x>0
$$

Given that the set of values of x for which $\mathrm{f}(x)$ is a decreasing function of x is $0<x \leq k$ ，find the exact value of k ．

C3 Differentiation

1 Differentiate with respect to x
a $(x+3)^{5}$
b $(2 x-1)^{3}$
c $(8-x)^{7}$
d $2(3 x+4)^{6}$
e $(6-5 x)^{4}$
f $\frac{1}{x-2}$
g $\frac{4}{(2 x+3)^{3}}$
h $\frac{1}{(7-3 x)^{2}}$

2 Differentiate with respect to t
a $2 \mathrm{e}^{3 t}$
b $\sqrt{4 t-1}$
c $5 \ln 2 t$
d $(8-3 t)^{\frac{3}{2}}$
e $3 \ln (6 t+1)$
f $\frac{1}{2} \mathrm{e}^{5 t+4}$
g $\frac{6}{\sqrt[3]{2 t-5}}$
h $2 \ln \left(3-\frac{1}{4} t\right)$

3 Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for each of the following．
a $y=(3 x-1)^{4}$
b $y=4 \ln (1+2 x)$
c $y=\sqrt{5-2 x}$

4 Find the value of $\mathrm{f}^{\prime}(x)$ at the value of x indicated in each case．
a $\mathrm{f}(x)=x^{2}-6 \ln 2 x$ ，
$x=3$
b $\mathrm{f}(x)=3+2 x-\mathrm{e}^{x-2}$,
$x=2$
c $\mathrm{f}(x)=(2-5 x)^{4}$ ，
$x=\frac{1}{2}$
d $\mathrm{f}(x)=\frac{4}{x+5}$,
$x=-1$

5 Find the value of x for which $\mathrm{f}^{\prime}(x)$ takes the value indicated in each case．
a $\mathrm{f}(x)=4 \sqrt{3 x+15}$ ，
$\mathrm{f}^{\prime}(x)=2$
b $\mathrm{f}(x)=x^{2}-\ln (x-2)$
$\mathrm{f}^{\prime}(x)=5$

6 Differentiate with respect to x
a $\left(x^{2}-4\right)^{3}$
b $2\left(3 x^{2}+1\right)^{6}$
c $\ln \left(3+2 x^{2}\right)$
d $(2+x)^{3}(2-x)^{3}$
e $\left(\frac{x^{4}+6}{2}\right)^{8}$
f $\frac{1}{\sqrt{3-x^{2}}}$
g $4+7 \mathrm{e}^{x^{2}}$
h $\left(1-5 x+x^{3}\right)^{4}$
i $3 \ln (4-\sqrt{x})$
j $\left(\mathrm{e}^{4 x}+2\right)^{7}$
k $\frac{1}{5+4 \sqrt{x}}$
l $\left(\frac{2}{x}-x\right)^{5}$

7 Find the coordinates of any stationary points on each curve．
a $y=(2 x-3)^{5}$
b $y=\left(x^{2}-4\right)^{3}$
c $y=8 x-\mathrm{e}^{2 x}$
d $y=\sqrt{1+2 x^{2}}$
e $y=2 \ln \left(x-x^{2}\right)$
f $y=4 x+\frac{1}{x-3}$

8 Find an equation for the tangent to each curve at the point on the curve with the given x－coordinat
a $y=(3 x-7)^{4}$ ，
$x=2$
b $y=2+\ln (1+4 x)$ ，
$x=0$
c $y=\frac{9}{x^{2}+2}$ ，
$x=1$
d $y=\sqrt{5 x-1}$ ，
$x=\frac{1}{4}$

9 Find an equation for the normal to each curve at the point on the curve with the given x－coordinat
a $y=\mathrm{e}^{4-x^{2}}-10$ ，
$x=-2$
b $y=\left(1-2 x^{2}\right)^{3}$ ，
$x=\frac{1}{2}$
c $y=\frac{1}{2-\ln x}$ ，
$x=1$
d $y=6 \mathrm{e}^{\frac{x}{3}}$ ，
$x=3$

C3 Differentiation

1 Find an equation for the tangent to the curve with equation $y=x^{2}+\ln (4 x-1)$ at the point on the curve where $x=\frac{1}{2}$ ．

2 A curve has the equation $y=\sqrt{8-\mathrm{e}^{2 x}}$ ．
The point P on the curve has y－coordinate 2 ．
a Find the x－coordinate of P ．
b Show that the tangent to the curve at P has equation

$$
2 x+y=2+\ln 4
$$

3 A curve has the equation $y=2 x+1+\ln (4-2 x), x<2$ ．
a Find and simplify expressions for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ ．
b Find the coordinates of the stationary point of the curve．
c Determine the nature of this stationary point．

The diagram shows the curve with equation $y=\frac{3}{2 x+1}$ ．
a Find an equation for the normal to the curve at the point $P(1,1)$ ．
The normal to the curve at P intersects the curve again at the point Q ．
b Find the exact coordinates of Q ．
5 A quantity N is increasing such that at time t seconds，

$$
N=a \mathrm{e}^{k t} .
$$

Given that at time $t=0, N=20$ and that at time $t=8, N=60$ ，find
a the values of the constants a and k ，
b the value of N when $t=12$ ，
c the rate at which N is increasing when $t=12$ ．

$$
\mathrm{f}(x) \equiv\left(5-2 x^{2}\right)^{3} .
$$

a Find $\mathrm{f}^{\prime}(x)$ ．
b Find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$ ．
c Find the equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point with x－coordinate $\frac{3}{2}$ ， giving your answer in the form $a x+b y+c=0$ ，where a, b and c are integers．

7 A curve has the equation $y=4 x-\frac{1}{2} \mathrm{e}^{2 x}$ ．
a Find the coordinates of the stationary point of the curve，giving your answers in terms of natural logarithms．
b Determine the nature of the stationary point．

8

The diagram shows the curve $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=3 \ln 5 x-2 x, x>0$ ．
a Find $\mathrm{f}^{\prime}(x)$ ．
b Find the x－coordinate of the point on the curve at which the gradient of the normal to the curve is $-\frac{1}{4}$ ．
c Find the coordinates of the maximum turning point of the curve．
d Write down the set of values of x for which $\mathrm{f}(x)$ is a decreasing function．
9 The curve C has the equation $y=\sqrt{x^{2}+3}$ ．
a Find an equation for the tangent to C at the point $A(-1,2)$ ．
b Find an equation for the normal to C at the point $B(1,2)$ ．
c Find the x－coordinate of the point where the tangent to C at A meets the normal to C at B ．
10 A bucket of hot water is placed outside and allowed to cool．The surface temperature of the water，$T^{\circ} \mathrm{C}$ ，after t minutes is given by

$$
T=20+60 \mathrm{e}^{-k t},
$$

where k is a positive constant．
a State the initial surface temperature of the water．
b State，with a reason，the air temperature around the bucket．
Given that $T=30$ when $t=25$ ，
c find the value of k ，
d find the rate at which the surface temperature of the water is decreasing when $t=40$ ．
11

$$
\mathrm{f}(x) \equiv x^{2}-7 x+4 \ln \left(\frac{x}{2}\right), x>0 .
$$

a Solve the equation $\mathrm{f}^{\prime}(x)=0$ ，giving your answers correct to 2 decimal places．
b Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point on the curve where $x=2$ ．
12 A curve has the equation $y=x^{2}-\frac{8}{x-1}$ ．
a Show that the x－coordinate of any stationary point of the curve satisfies the equation

$$
x^{3}-2 x^{2}+x+4=0
$$

b Hence，show that the curve has exactly one stationary point and find its coordinates．
c Determine the nature of this stationary point．

C3 Differentiation

1 Given that $\mathrm{f}(x)=x(x+2)^{3}$ ，find $\mathrm{f}^{\prime}(x)$
a by first expanding $\mathrm{f}(x)$ ，
b using the product rule．

2 Differentiate each of the following with respect to x and simplify your answers．
a $x \mathrm{e}^{x}$
b $x(x+1)^{5}$
c $x \ln x$
d $x^{2}(x-1)^{3}$
e $x^{3} \ln 2 x$
f $x^{2} \mathrm{e}^{-x}$
g $2 x^{4}(5+x)^{3}$
h $x^{2}(x-3)^{4}$

3 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ，simplifying your answer in each case．
a $y=x(2 x-1)^{3}$
b $y=3 x^{4} \mathrm{e}^{2 x+3}$
c $y=x \sqrt{x-1}$
d $y=x^{2} \ln (x+6)$
e $y=x(1-5 x)^{4}$
f $y=(x+2)(x-3)^{3}$
g $y=x^{\frac{4}{3}} \mathrm{e}^{3 x}$
h $y=(x+1) \ln \left(x^{2}-1\right)$
i $y=x^{2} \sqrt{3 x+1}$

4 Find the value of $\mathrm{f}^{\prime}(x)$ at the value of x indicated in each case．
a $\mathrm{f}(x)=4 x \mathrm{e}^{3 x}$ ，
$x=0$
b $\mathrm{f}(x)=2 x\left(x^{2}+2\right)^{3}$,
$x=-1$
c $\mathrm{f}(x)=(5 x-4) \ln 3 x$ ，
$x=\frac{1}{3}$
d $\mathrm{f}(x)=x^{\frac{1}{2}}(1-2 x)^{3}$ ，
$x=\frac{1}{4}$

5 Find the coordinates of any stationary points on each curve．
a $y=x \mathrm{e}^{2 x}$
b $y=x(x-4)^{3}$
c $y=x^{2}(2 x-3)^{4}$
d $y=x \sqrt{x+12}$
e $y=2+x^{2} \mathrm{e}^{-4 x}$
f $y=(1-3 x)(3-x)^{3}$

6 Find an equation for the tangent to each curve at the point on the curve with the given x－coordinat
a $y=x(x-2)^{4}$ ，
$x=1$
b $y=3 x^{2} \mathrm{e}^{x}$ ，
$x=1$
c $y=(4 x-1) \ln 2 x$ ，
$x=\frac{1}{2}$
d $y=x^{2} \sqrt{x+6}$ ，
$x=-2$

7 Find an equation for the normal to each curve at the point on the curve with the given x－coordinat Give your answers in the form $a x+b y+c=0$ ，where a, b and c are integers．
a $y=x^{2}(2-x)^{3}$ ，
$x=1$
b $y=x \ln (3 x-5)$ ，
$x=2$
c $y=\left(x^{2}-1\right) \mathrm{e}^{3 x}$ ，
$x=0$
d $y=x \sqrt{x-4}$ ，
$x=8$

8

The diagram shows part of the curve with equation $y=x \mathrm{e}^{x^{2}}$ and the tangent to the curve at the point P with x－coordinate 1 ．
a Find an equation for the tangent to the curve at P ．
b Show that the area of the triangle bounded by this tangent and the coordinate axes is $\frac{2}{3} \mathrm{e}$ ．

C3 Differentiation

1 Given that $\mathrm{f}(x)=\frac{x}{x+2}$ ，find $\mathrm{f}^{\prime}(x)$
a using the product rule，
b using the quotient rule．

2 Differentiate each of the following with respect to x and simplify your answers．
a $\frac{4 x}{1-3 x}$
b $\frac{\mathrm{e}^{x}}{x-4}$
c $\frac{x+1}{2 x+3}$
d $\frac{\ln x}{2 x}$
e $\frac{x}{2-x^{2}}$
f $\frac{\sqrt{x}}{3 x+2}$
g $\frac{\mathrm{e}^{2 x}}{1-\mathrm{e}^{2 x}}$
h $\frac{2 x+1}{\sqrt{x-3}}$

3 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ，simplifying your answer in each case．
a $y=\frac{x^{2}}{x+4}$
b $y=\frac{\sqrt{x-4}}{2 x^{2}}$
c $y=\frac{2 \mathrm{e}^{x}+1}{1-3 \mathrm{e}^{x}}$
d $y=\frac{1-x}{x^{3}+2}$
e $y=\frac{\ln (3 x-1)}{x+2}$
f $y=\sqrt{\frac{x+1}{x+3}}$

4 Find the coordinates of any stationary points on each curve．
a $y=\frac{x^{2}}{3-x}$
b $y=\frac{\mathrm{e}^{4 x}}{2 x-1}$
c $y=\frac{x+5}{\sqrt{2 x+1}}$
d $y=\frac{\ln 3 x}{2 x}$
e $y=\left(\frac{x+1}{x-2}\right)^{2}$
f $y=\frac{x^{2}-3}{x+2}$

5 Find an equation for the tangent to each curve at the point on the curve with the given x－coordinat
a $y=\frac{2 x}{3-x}$,
$x=2$
b $y=\frac{\mathrm{e}^{x}+3}{\mathrm{e}^{x}+1}$,
$x=0$
c $y=\frac{\sqrt{x}}{5-x}$ ，
$x=4$
d $y=\frac{3 x+4}{x^{2}+1}$ ，
$x=-1$

6 Find an equation for the normal to each curve at the point on the curve with the given x－coordinat Give your answers in the form $a x+b y+c=0$ ，where a, b and c are integers．
a $y=\frac{1-x}{3 x+1}, \quad x=1$
b $y=\frac{4 x}{\sqrt{2-x}}, \quad x=-2$
c $y=\frac{\ln (2 x-5)}{3 x-5}, \quad x=3$
d $y=\frac{x}{x^{3}-4}, \quad x=2$

7

The diagram shows part of the curve $y=\frac{2 \sqrt{x}-3}{x-2}$ which is stationary at the points A and B ．
a Show that the x－coordinates of A and B satisfy the equation $x-3 \sqrt{x}+2=0$ ．
b Hence，find the coordinates of A and B ．

1 A curve has the equation $y=x^{2}(2-x)^{3}$ and passes through the point $A(1,1)$ ．
a Find an equation for the tangent to the curve at A ．
b Show that the normal to the curve at A passes through the origin．
2 A curve has the equation $y=\frac{x}{2 x+3}$ ．
a Find an equation for the tangent to the curve at the point $P(-1,-1)$ ．
b Find an equation for the normal to the curve at the origin，O ．
c Find the coordinates of the point where the tangent to the curve at P meets the normal to the curve at O ．

The diagram shows the curve with equation $y=(x+3)(x-1)^{3}$ which crosses the x－axis at the points P and Q and has a minimum at the point R ．
a Write down the coordinates of P and Q ．
b Find the coordinates of R ．
4 Given that $y=x \sqrt{4 x+1}$ ，
a show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+1}{\sqrt{4 x+1}}$ ，
b solve the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-5 y=0$ ．
5 A curve has the equation $y=\frac{2(x-1)}{x^{2}+3}$ and crosses the x－axis at the point A ．
a Show that the normal to the curve at A has the equation $y=2-2 x$ ．
b Find the coordinates of any stationary points on the curve．

$$
\mathrm{f}(x) \equiv x^{\frac{3}{2}}(x-3)^{3}, x>0
$$

a Show that

$$
\mathrm{f}^{\prime}(x)=k x^{\frac{1}{2}}(x-1)(x-3)^{2},
$$

where k is a constant to be found．
b Hence，find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$ ．

$$
\mathrm{f}(x)=x \sqrt{2 x+12}, x \geq-6
$$

a Find $\mathrm{f}^{\prime}(x)$ and show that $\mathrm{f}^{\prime \prime}(x)=\frac{3(x+8)}{(2 x+12)^{\frac{3}{2}}}$ ．
b Find the coordinates of the turning point of the curve $y=\mathrm{f}(x)$ and determine its nature．

1 Differentiate with respect to x
a $\cos x$
b $5 \sin x$
c $\cos 3 x$
d $\sin \frac{1}{4} x$
e $\sin (x+1)$
f $\cos (3 x-2)$
g $4 \sin \left(\frac{\pi}{3}-x\right)$
h $\cos \left(\frac{1}{2} x+\frac{\pi}{6}\right)$
i $\sin ^{2} x$
j $2 \cos ^{3} x$
k $\cos ^{2}(x-1)$
l $\sin ^{4} 2 x$

2 Use the derivatives of $\sin x$ and $\cos x$ to show that
a $\frac{\mathrm{d}}{\mathrm{d} x}(\tan x)=\sec ^{2} x$
b $\frac{\mathrm{d}}{\mathrm{d} x}(\sec x)=\sec x \tan x$
c $\frac{\mathrm{d}}{\mathrm{d} x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
d $\frac{\mathrm{d}}{\mathrm{d} x}(\cot x)=-\operatorname{cosec}^{2} x$

3 Differentiate with respect to t
a $\cot 2 t$
b $\sec (t+2)$
c $\tan (4 t-3)$
d $\operatorname{cosec} 3 t$
e $\tan ^{2} t$
f $3 \operatorname{cosec}\left(t+\frac{\pi}{6}\right)$
g $\cot ^{3} t$
h $4 \sec \frac{1}{2} t$
i $\cot (2 t-3)$
j $\sec ^{2} 2 t$
k $\frac{1}{2} \tan (\pi-4 t)$
l $\operatorname{cosec}^{2}(3 t+1)$

4 Differentiate with respect to x
a $\ln (\sin x)$
b $6 \mathrm{e}^{\tan x}$
c $\sqrt{\cos 2 x}$
d $\mathrm{e}^{\sin 3 x}$
e $2 \cot x^{2}$
f $\sqrt{\sec x}$
g $3 \mathrm{e}^{-\operatorname{cosec} 2 x}$
h $\ln (\tan 4 x)$

5 Find the coordinates of any stationary points on each curve in the interval $0 \leq x \leq 2 \pi$ ．
a $y=x+2 \sin x$
b $y=2 \sec x-\tan x$
c $y=\sin x+\cos 2 x$

6 Find an equation for the tangent to each curve at the point on the curve with the given x－coordinat
a $y=1+\sin 2 x$ ，
$x=0$
b $y=\cos x$ ，
$x=\frac{\pi}{3}$
c $y=\tan 3 x$ ，
$x=\frac{\pi}{4}$
d $y=\operatorname{cosec} x-2 \sin x, \quad x=\frac{\pi}{6}$

7 Differentiate with respect to x
a $x \sin x$
b $\frac{\cos 2 x}{x}$
c $\mathrm{e}^{x} \cos x$
d $\sin x \cos x$
e $x^{2} \operatorname{cosec} x$
f $\sec x \tan x$
g $\frac{x}{\tan x}$
h $\frac{\sin 2 x}{\mathrm{e}^{3 x}}$
i $\cos ^{2} x \cot x$
j $\frac{\sec 2 x}{x^{2}}$
k $x \tan ^{2} 4 x$
l $\frac{\sin x}{\cos 2 x}$

8 Find the value of $\mathrm{f}^{\prime}(x)$ at the value of x indicated in each case．
a $\mathrm{f}(x)=\sin 3 x \cos 5 x$ ，
$x=\frac{\pi}{4}$
b $\mathrm{f}(x)=\tan 2 x \sin x$ ，
$x=\frac{\pi}{3}$
c $\mathrm{f}(x)=\frac{\ln (2 \cos x)}{\sin x}$,
$x=\frac{\pi}{3}$
d $\mathrm{f}(x)=\sin ^{2} x \cos ^{3} x, \quad x=\frac{\pi}{6}$

9 Find an equation for the normal to the curve $y=3+x \cos 2 x$ at the point where it crosses the y－axis．

10 A curve has the equation $y=\frac{2+\sin x}{1-\sin x}, 0 \leq x \leq 2 \pi, x \neq \frac{\pi}{2}$ ．
a Find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ．
b Find the coordinates of the turning point of the curve．
c Show that the tangent to the curve at the point P ，with x－coordinate $\frac{\pi}{6}$ ，has equation

$$
y=6 \sqrt{3} x+5-\sqrt{3} \pi .
$$

11 A curve has the equation $y=\mathrm{e}^{-x} \sin x$ ．
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ ．
b Find the exact coordinates of the stationary points of the curve in the interval $-\pi \leq x \leq \pi$ and determine their nature．

12 The curve C has the equation $y=x \sec x$ ．
a Show that the x－coordinate of any stationary point of C must satisfy the equation

$$
1+x \tan x=0 .
$$

b By sketching two suitable graphs on the same set of axes，deduce the number of stationary points C has in the interval $0 \leq x \leq 2 \pi$ ．

13

The diagram shows the curve $y=\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$ ，where

$$
\mathrm{f}(x) \equiv \cos x \sin 2 x
$$

a Show that $\mathrm{f}^{\prime}(x)=2 \cos x\left(1-3 \sin ^{2} x\right)$ ．
b Find the x－coordinates of the stationary points of the curve in the interval $0 \leq x \leq 2 \pi$ ．
c Show that the maximum value of $\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$ is $\frac{4}{9} \sqrt{3}$ ．
d Explain why this is the maximum value of $\mathrm{f}(x)$ for all real values of x ．
14 A curve has the equation $y=\operatorname{cosec}\left(x-\frac{\pi}{6}\right)$ and crosses the y－axis at the point P ．
a Find an equation for the normal to the curve at P ．
The point Q on the curve has x－coordinate $\frac{\pi}{3}$ ．
b Find an equation for the tangent to the curve at Q ．
The normal to the curve at P and the tangent to the curve at Q intersect at the point R ．
c Show that the x－coordinate of R is given by $\frac{8 \sqrt{3}+4 \pi}{13}$ ．

