1

The diagram shows triangle *ABC* in which AB = 16 cm, $\angle ABC = 118^{\circ}$ and $\angle ACB = 26^{\circ}$. Use the sine rule to find the length *AC* to 3 significant figures.

The diagram shows triangle *PQR* in which PQ = 8.2 cm, PR = 11.4 cm and $\angle PQR = 57^{\circ}$. Use the sine rule to find the size of $\angle PRQ$ in degrees to 1 decimal place.

3 In triangle *ABC*, AB = 16.2 cm, BC = 12.3 cm and $\angle BAC = 37^{\circ}$. Find the two possible sizes of $\angle ACB$ and the corresponding lengths of *AC*.

The diagram shows triangle XYZ in which XY = 15.3 cm, YZ = 7.8 cm and $\angle XYZ = 31.5^{\circ}$. Use the cosine rule to find the length XZ.

5

4

The diagram shows triangle *ABC* in which AB = 18 cm, AC = 13 cm and BC = 17 cm. Use the cosine rule to find the size of $\angle ACB$.

书山有路勤为径,学海无涯苦作舟。

- **9** Joanne walks 4.2 miles on a bearing of 138°. She then walks 7.8 miles on a bearing of 251°.
 - **a** Calculate how far Joanne is from the point where she started.
 - **b** Find, as a bearing, the direction in which Joanne would have to walk in order to return to the point where she started.
- A ferry and a cargo ship are both approaching the same port. The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323°.
 Find the distance between the two vessels and the bearing of the cargo ship from the ferry.

11

The diagram shows triangle *ABC* in which AB = 10.4 cm, AC = 11.0 cm and BC = 9.7 cm. Find the area of the triangle to 3 significant figures.

12

The diagram shows triangle XYZ in which XY = 22.5 cm and $\angle XYZ = 34^{\circ}$. Given that the area of the triangle is 100 cm², find the length XZ.

- 8 The minor arc *AB* of a circle, centre *O*, has length 46.2 cm. Given that $\angle AOB = 78.5^{\circ}$, find
 - **a** the distance *OA*, **b** the perimeter of sector *OAB*.

a

9 Find, in cm^2 to 1 decimal place, the area of each of the following circular sectors.

- 10 PQ is an arc of a circle of radius 8 cm, centre O.Given that arc PQ has length 12 cm, find
 - **a** the angle, in radians, subtended by *PQ* at *O*,
 - **b** the area of sector *OPQ*.
- 11

The diagram shows a circle of radius 11.6 cm, centre *O*. The arc of the circle *AB* subtends an angle of 1.4 radians at *O*. Find, to 3 significant figures,

a the perimeter of the minor sector *OAB*,

11 cm

0.9°

- **b** the perimeter of the major sector *OAB*,
- **c** the area of the minor sector *OAB*,

d the area of the major sector *OAB*.

- The diagram shows a circular sector OAB. Find the area of
- **a** the sector *OAB*, **b** the triangle *OAB*,
- c the shaded segment.
- 13 Find the area of the shaded segment in each of the following circular sectors.

R

12

C2

TRIGONOMETRY

1

2

The diagram shows a sector of a circle of radius 12.6 cm. Given that the perimeter of the sector is 31.7 cm, find its area.

The diagram shows a sector OAB of a circle, centre O and radius 7.3 cm. Given that the area of the sector is 38.4 cm², find

- **a** the size of $\angle AOB$ in radians,
- **b** the perimeter of the shaded segment.

The diagram shows a sector of a circle of radius r cm. The area of the sector is 40 cm².

- **a** Show that the perimeter of the sector is $(2r + \frac{80}{r})$ cm.
- **b** Hence find the set of values of r for which the perimeter of the sector is less than 26 cm.

4

3

The diagram shows three circles with centres A, B and C, and radii 4 cm, 6 cm and 2 cm respectively. Each circle touches the other two circles.

- **a** Prove that triangle *ABC* is a right-angled triangle.
- **b** Find $\angle ABC$ in radians to 2 decimal places.
- **c** Show that the area of the shaded region enclosed by the three circles is 1.86 cm² to 3 significant figures.

5

6

The diagram shows a company logo which consists of a circle of diameter 10 cm drawn on top of a rectangle measuring 6 cm by 14 cm. The centres of the circle and rectangle are coincident and the two shapes intersect at A, B, C and D.

- **a** Find the length of the chord of the circle *AB*.
- **b** Show that the perimeter of the logo is 42.5 cm to 3 significant figures.
- **c** Find the area of the logo.

AB, *CD* and *EF* are arcs of concentric circles, centre *O*, such that *OACE* and *OBDF* are straight lines as shown in the diagram. The area of the shaded region *CEFD* is denoted by A_1 and the area of the shaded sector *OAB* by A_2 .

Given that OA = r cm, AC = 2 cm, OE = 8 cm and $\angle AOB = \theta$ radians,

a find an expression for A_1 in terms of r and θ .

Given also that $A_1 = 7A_2$,

b show that r = 2.5

A girl is playing with a paper clip. She straightens the wire and then bends it to form an equilateral triangle, *Shape A* above. She then curves one side of the triangle to form a sector of a circle, *Shape B* above.

Find, to 1 decimal place, the percentage change in the area enclosed by the paper clip when it is changed from *Shape A* to *Shape B*, indicating whether this is an increase or decrease.

www.CasperYC.club

7

C2

1	Find to 3 decimal places the value of			
	a sin 131°	b tan 340.5°	$\mathbf{c} \cos 418^{\circ}$	d sin (-165.2°)
2	Give the exact value of	f		
	a cos 60°	b sin 45°	c $\tan 45^{\circ}$	d cos 30°
	e sin 90°	f tan 30°	g cos 120°	h sin 135°
	i tan 210°	j cos 225°	k sin 300°	l tan 120°
	m cos 330°	n tan 150°	o cos (-60°)	p sin 405°
	q tan (-45°)	r sin (-240°)	s tan 570°	t $\cos(-150^{\circ})$
3	Find to 3 decimal place	es the value of		
	a $\cos 0.42^{\circ}$	b $\sin 4.16^{\circ}$	c $\tan(-3.1^{\circ})$	d $\cos 11.25^{\circ}$
4	Give the exact value of	f		
	a sin $\frac{\pi}{6}$	b cos $\frac{\pi}{2}$	c sin $\frac{\pi}{4}$	d $\tan \frac{\pi}{3}$
	e cos $\frac{\pi}{3}$	f sin $\frac{2\pi}{3}$	g $\tan \frac{3\pi}{4}$	h cos $\frac{5\pi}{6}$
	i $\tan \frac{5\pi}{3}$	j cos $\frac{5\pi}{4}$	$\mathbf{k} \sin \left(-\frac{\pi}{6}\right)$	l tan $(-\frac{5\pi}{6})$
	$\mathbf{m} \sin 3\pi$	n tan $(-\frac{5\pi}{4})$	o cos $\frac{8\pi}{3}$	p sin $(-\frac{7\pi}{3})$
5	<i>y</i>			
		\frown	$v = \sin x^{\circ}$	

The graph shows the curve $y = \sin x^{\circ}$ in the interval $0 \le x \le 720$.

a Write down the coordinates of any points where the curve intersects the coordinate axes.

b Write down the coordinates of the turning points of the curve.

6

The graph shows the curve $y = \tan x^{\circ}$ in the interval $0 \le x \le 720$.

- **a** Write down the coordinates of any points where the curve intersects the coordinate axes.
- **b** Write down the equations of the asymptotes.

7 Describe the transformation that maps the graph of $y = \sin x^{\circ}$ onto the graph of

a $y = 3 \sin x^{\circ}$ **b** $y = \sin 4x^{\circ}$ **c** $y = \sin (x + 60)^{\circ}$ **d** $y = \sin (-x^{\circ})$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \le x \le 360^{\circ}$.

a $y = \cos x$	and	$y = 3 \cos x$	b $y = \sin x$	and	$y = \sin\left(x - 30^\circ\right)$
c $y = \cos x$	and	$y = \cos 2x$	d $y = \tan x$	and	$y = 2 + \tan x$
$e y = \sin x$	and	$y = -\sin x$	$\mathbf{f} y = \cos x$	and	$y = \cos\left(x + 60^\circ\right)$
$\mathbf{g} y = \tan x$	and	$y = \tan \frac{1}{2}x$	h $y = \sin x$	and	$y = 1 + \sin x$

9 Each curve is shown for the interval $-180^\circ \le x \le 180^\circ$.

Write down the coordinates of the turning points of each curve in this interval.

10 Write down the period of each of the following graphs.

 a $y = \sin x^{\circ}$ b $y = \tan x^{\circ}$ c $y = 2\cos x^{\circ}$

 d $y = \sin 2x^{\circ}$ e $y = \tan (x + 30)^{\circ}$ f $y = \cos \frac{1}{3}x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \le x \le 360$. Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.

a $y = \tan x^{\circ}$	b $y = \cos(x+30)^\circ$	c $y = \sin 2x^{\circ}$
$\mathbf{d} y = 1 + \cos x^{\circ}$	$\mathbf{e} y = \sin \frac{1}{2} x^{\circ}$	$\mathbf{f} y = \tan \left(x + 90 \right)^{\circ}$
$\mathbf{g} y = \sin\left(x - 45\right)^\circ$	h $y = -\tan x^{\circ}$	$\mathbf{i} y = \cos \left(x - 120 \right)^{\circ}$

12 Sketch each of the following curves for x in the interval $0 \le x \le 2\pi$. Show the coordinates of any turning points and the equations of any asymptotes.

a	$y = \cos x$	b $y = 3 \sin x$	c	$y = \tan 2x$
d	$y = \sin\left(x - \frac{\pi}{3}\right)$	$e y = \cos \frac{1}{3}x$	f	$y = \sin x - 2$
g	$y = \tan\left(x + \frac{\pi}{4}\right)$	h $y = \sin \frac{3}{4}x$	i	$y = \cos\left(x - \frac{\pi}{6}\right)$

Find all values of x in the interval $0 \le x \le 360^\circ$ such that 1 **b** $\tan x = \sqrt{3}$ **a** $\sin x = \frac{1}{2}$ $\mathbf{c} \quad \cos x = 0$ **d** $\sin x = -1$ **e** $\cos x = \frac{\sqrt{3}}{2}$ **f** $\sin x = \frac{1}{\sqrt{2}}$ **g** $\tan x = -1$ **h** $\cos x = -\frac{1}{2}$ **i** $\sin x = -\frac{\sqrt{3}}{2}$ **j** $\tan x = \frac{1}{\sqrt{3}}$ **k** $\cos x = -\frac{1}{\sqrt{2}}$ **l** $\tan x = -\sqrt{3}$ 2 Solve each equation for θ in the interval $0 \le \theta \le 360^\circ$ giving your answers to 1 decimal place. **a** $\cos \theta = 0.4$ **b** sin $\theta = 0.27$ c $\tan \theta = 1.6$ **d** sin $\theta = 0.813$ e tan $\theta = 0.1$ f $\cos \theta = 0.185$ g sin $\theta = -0.6$ **h** tan $\theta = -0.7$ i $\cos \theta = -0.39$ j tan $\theta = -3.4$ k $\cos \theta = -0.636$ $I \sin \theta = -0.203$ 3 Solve each equation for *x* in the interval $0 \le x \le 360$. Give your answers to 1 decimal place where appropriate. **a** $\sin(x-60)^\circ = 0.5$ **b** $\tan(x+30)^{\circ} = 1$ c $\cos(x-45)^\circ = 0.2$ **d** $\tan(x+30)^\circ = 0.78$ e $\cos(x+45)^\circ = -0.5$ **f** $\sin(x-60)^\circ = -0.89$ **h** $\sin(x+30)^\circ = 0.14$ i $\cos(x-60)^\circ = 0.6$ $g \cos(x+45)^\circ = 0.9$ $1 \quad \sin 2x^\circ = 0.5$ $\sin (x - 30)^\circ = -0.3$ **k** $\tan(x-60)^\circ = -1.26$ **m** $\cos 2x^{\circ} = 0.64$ **n** $\sin 2x^{\circ} = -0.18$ **o** $\tan 2x^{\circ} = -2.74$ **p** sin $\frac{1}{2}x^{\circ} = 0.703$ **r** $\cos 2x^{\circ} = -0.415$ **q** $\tan 3x^{\circ} = 0.591$ 4 Solve each equation for x in the interval $0 \le x \le 2\pi$ giving your answers in terms of π . **a** $\sin x = 0$ **b** $\cos x = \frac{1}{2}$ c $\tan x = 1$ **e** $\tan x = -\frac{1}{\sqrt{3}}$ **f** $\sin x = -\frac{1}{\sqrt{2}}$ **d** $\cos x = -1$ i $\cos(x + \frac{\pi}{3}) = -\frac{\sqrt{3}}{2}$ **g** $\tan (x + \frac{\pi}{6}) = \sqrt{3}$ **h** $\sin (x - \frac{\pi}{4}) = \frac{1}{2}$ **k** cos $2x = -\frac{1}{\sqrt{2}}$ **j** $\sin(x + \frac{\pi}{3}) = \frac{1}{\sqrt{2}}$ **I** $\tan 3x = \frac{1}{\sqrt{2}}$ Solve each equation for θ in the interval $-180^\circ \le \theta \le 180^\circ$. 5 Give your answers to 1 decimal place where appropriate. a $\cos \theta = 0$ **h** $\tan 2\theta + 1 = 0$ aim (0 + (0.0) - 0.201)

a $\cos \theta = 0$	b $\tan 2\theta + 1 = 0$	c $\sin(\theta + 60^{\circ}) = 0.291$
d $2 \tan (\theta - 15^\circ) = 3.7$	$e \sin 2\theta - 0.3 = 0$	f $4\cos 3\theta = 2$
$\mathbf{g} 1 + \sin\left(\boldsymbol{\theta} + 110^\circ\right) = 0$	h $5\cos(\theta - 27^\circ) = 3$	i $7-3\tan\theta=0$
$\mathbf{j} 3+8\cos 2\theta = 0$	$\mathbf{k} 2 + 6 \tan\left(\theta + 92^\circ\right) = 0$	$1 1 - 4\sin \frac{1}{3}\theta = 0$

书山有路勤为径,学海无涯苦作舟。

6 Solve each equation for x in the interval $0 \le x \le 180^\circ$. Give your answers to 1 decimal place where appropriate.

a $\tan(2x+30^\circ) = 1$	b $\sin(2x-15^\circ)=0$	c $\cos(2x+70^\circ) = 0.5$
d $\sin(2x+210^\circ) = 0.26$	e $\cos(2x - 38^\circ) = -0.64$	f $\tan(2x-56^\circ) = -0.32$
g $\cos(3x - 24^\circ) = 0.733$	h $\tan(3x+60^\circ) = -1.9$	i $\sin\left(\frac{1}{2}x + 18^\circ\right) = 0.572$

7 Solve each equation for x in the interval $0 \le x \le 2\pi$, giving your answers to 2 decimal places.

a $\tan x = 0.52$	b $\cos 2x = 0.315$	c $\sin(x + \frac{\pi}{4}) = 0.7$
$\mathbf{d} 3\cos x + 1 = 0$	e sin $\frac{1}{2}x = 0.09$	f $\tan 2x = -0.225$
g 3-4 sin $(x-\frac{\pi}{3})$	$= 0$ h $\tan(2x + \frac{\pi}{6}) = 2$	i $\cos 3x = -0.81$
$\mathbf{j} 5+3\tan x = 0$	k $\cos(2x - \frac{\pi}{2}) = -0.34$	$1 1 + 6\sin 2x = 0$

a Solve the equation

$$2y^2 - 3y + 1 = 0.$$

b Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $2\sin^2 x - 3\sin x + 1 = 0.$

9 Solve each equation for θ in the interval $0 \le \theta \le 360$. Give your answers to 1 decimal place where appropriate.

a $\sin^2 \theta^\circ = 0.75$ b $1 - \tan^2 \theta^\circ = 0$ c $2\cos^2 \theta^\circ + \cos \theta^\circ = 0$ d $\sin \theta^\circ (4\cos \theta^\circ - 1) = 0$ e $4\sin \theta^\circ = \sin \theta^\circ \tan \theta^\circ$ f $(2\cos \theta^\circ - 1)(\cos \theta^\circ + 1) = 0$ g $\tan^2 \theta^\circ - 3\tan \theta^\circ + 2 = 0$ h $3\sin^2 \theta^\circ - 7\sin \theta^\circ + 2 = 0$ i $\tan^2 \theta^\circ - \tan \theta^\circ = 6$ j $6\cos^2 \theta^\circ - \cos \theta^\circ - 2 = 0$ k $4\sin^2 \theta^\circ + 3 = 8\sin \theta^\circ$ l $\cos^2 \theta^\circ + 2\cos \theta^\circ - 1 = 0$ m $\tan^2 \theta^\circ + 3\tan \theta^\circ - 1 = 0$ n $3\sin^2 \theta^\circ + \sin \theta^\circ = 1$

10 a Sketch the curve $y = \cos x^{\circ}$ for x in the interval $0 \le x \le 360$.

b Sketch on the same diagram the curve $y = \cos (x + 90)^{\circ}$ for x in the interval $0 \le x \le 360$.

c Using your diagram, find all values of x in the interval $0 \le x \le 360$ for which $\cos x^\circ = \cos (x + 90)^\circ$.

- 11 **a** Sketch the curves $y = \cos x^{\circ}$ and $y = \cos 3x^{\circ}$ on the same set of axes for x in the interval $0 \le x \le 360$.
 - **b** Solve, for x in the interval $0 \le x \le 360$, the equation

$$\cos x^\circ = \cos 3x^\circ.$$

c Hence solve, for x in the interval $0 \le x \le 180$, the equation $\cos 2x^\circ = \cos 6x^\circ$.

a Given that $4 \sin x + \cos x = 0$, show that $\tan x = -\frac{1}{4}$. 1 **b** Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $4\sin x + \cos x = 0$, giving your answers to 1 decimal place. 2 **a** Show that $5\sin^2 x + 5\sin x + 4\cos^2 x \equiv \sin^2 x + 5\sin x + 4$. **b** Hence, find the values of x in the interval $0 \le x \le 360^\circ$ for which $5\sin^2 x + 5\sin x + 4\cos^2 x = 0$ Solve each equation for x in the interval $0 \le x \le 360^\circ$. 3 Give your answers to 1 decimal place where appropriate. a $2\sin x - \cos x = 0$ **b** $3\sin x = 4\cos x$ $\mathbf{d} \quad 3\cos^2 x - \sin^2 x = 2$ c $\cos^2 x + 3\sin x - 3 = 0$ e $2\sin^2 x + 3\cos x = 3$ f $3\cos^2 x = 5(1 - \sin x)$ g $3 \sin x \tan x = 8$ **h** $\cos x = 3 \tan x$ i $3\sin^2 x - 5\cos x + 2\cos^2 x = 0$ i $2\sin^2 x + 7\sin x - 2\cos^2 x = 0$ $\sin^2 x - 9\cos x - \cos^2 x = 5$ **k** $3\sin x - 2\tan x = 0$ 4 Solve each equation for θ in the interval $-\pi \le \theta \le \pi$ giving your answers in terms of π . **a** $4\cos^2\theta = 1$ **b** $4\sin^2\theta + 4\sin\theta + 1 = 0$ $\cos^2 \theta + 2\cos \theta - 3 = 0$ **d** $3\sin^2\theta - \cos^2\theta = 0$ e $4\sin^2\theta - 5\sin\theta + 2\cos^2\theta = 0$ f $\sin^2 \theta - 3 \cos \theta - \cos^2 \theta = 2$ 5 Prove that **b** $\frac{1}{\cos x} - \cos x \equiv \sin x \tan x, \quad \cos x \neq 0$ $\mathbf{a} \quad (\sin x + \cos x)^2 \equiv 1 + 2\sin x \cos x$ $\mathbf{c} \quad \frac{\cos^2 x}{1-\sin x} \equiv 1 + \sin x, \quad \sin x \neq 1$ **d** $\frac{1+\sin x}{\cos x} \equiv \frac{\cos x}{1-\sin x}, \quad \cos x \neq 0$ **a** Prove the identity 6 $(\cos x - \tan x)^2 + (\sin x + 1)^2 \equiv 2 + \tan^2 x.$ **b** Hence find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ such that $(\cos x - \tan x)^2 + (\sin x + 1)^2 = 3.$ $f(x) \equiv \cos^2 x + 2\sin x, \quad 0 \le x \le 2\pi.$ 7

a Prove that f(x) can be expressed in the form

$$f(x) = 2 - (\sin x - 1)^2.$$

b Hence deduce the maximum value of f(x) and the value of x for which this occurs.

- 1 Find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ for which
 - **a** $3 \tan x \sqrt{3} = 0$,
 - **b** $2\cos(x+\frac{\pi}{3})+\sqrt{3}=0.$
- 2 Given that $\cos A = \sqrt{3} 1$,
 - **a** find the value of $\sin^2 A$ in the form $p\sqrt{3} + q$ where p and q are integers,
 - **b** show that $\tan^2 A = \frac{\sqrt{3}}{2}$.

6

The diagram shows sector *OAB* of a circle, centre *O*, radius 8 cm, in which $\angle AOB = 45^{\circ}$.

- **a** Find the perimeter of the sector in centimetres to 1 decimal place.
- **b** Show that the area of the shaded segment is $8(\pi 2\sqrt{2})$ cm².
- 4 Find, to 1 decimal place, the values of θ in the interval $0 \le \theta \le 360^\circ$ for which $2\sin^2 \theta + \sin \theta - \cos^2 \theta = 2.$

5 Solve, for x in the interval $-\pi \le x \le \pi$, the equation

 $3\sin^2 x = 4(1 - \sin x),$

giving your answers to 2 decimal places.

The diagram shows the curves $y = 2 \sin x$ and $y = 3 \cos x$ for x in the interval $0 \le x \le 2\pi$. Find, to 2 decimal places, the coordinates of the points where the curves intersect in this interval.

7 **a** Sketch the curve $y = \cos 2x^\circ$ for x in the interval $0 \le x \le 360$.

b Find the values of x in the interval $0 \le x \le 360$ for which

$$\cos 2x^\circ = -\frac{1}{2}.$$

8 Solve, for θ in the interval $0 \le \theta \le 360$, the equation

$$12\cos\theta^\circ = 7\tan\theta^\circ$$
,

giving your answers to 1 decimal place.

- 9 Given that $\tan 15^\circ = \frac{\tan 60^\circ \tan 45^\circ}{1 + (\tan 60^\circ \times \tan 45^\circ)}$,
 - **a** show that $\tan 15^\circ = 2 \sqrt{3}$,
 - **b** find the exact value of $\tan 345^{\circ}$.
- 10 Find, to an appropriate degree of accuracy, the values of x in the interval $0 \le x \le 360^\circ$ for which $\sin^2 x + 5 \cos x 3 \cos^2 x = 2$.

11

The diagram shows triangle *ABC* in which AC = 18 cm, $\angle BAC = 41^{\circ}$ and $\angle ACB = 26^{\circ}$. Find to 3 significant figures

a the length *BC*,

- **b** the area of triangle *ABC*.
- 12 Solve, for θ in the interval $0 \le \theta \le 360^\circ$, the equation $(6 \cos \theta - 1)(\cos \theta + 1) = 3.$
- 13 Find, in degrees to 1 decimal place, the values of x in the interval $-180^\circ \le x \le 180^\circ$ for which $\sin^2 x + 5 \sin x = 2 \cos^2 x$.
- **14** Prove that

$$\mathbf{a} \quad \sin^4 \theta - 2 \sin^2 \theta \equiv \cos^4 \theta$$

b
$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} \equiv \frac{2}{\sin\theta}$$
, for $\sin\theta \neq 0$.

15

- 1,

The gears in a toy are shown in the diagram above.

A thin rubber band passes around two circular discs. The centres of the discs are at P and Q where PQ = 8 cm and their radii are 2 cm and 5 cm respectively. The sections of the rubber band not in contact with the discs, RS and TU, are assumed to be taught.

- **a** Show that $\angle PQR = 1.186$ radians to 3 decimal places.
- **b** Find the length *RS*.
- c Find the length of the rubber band in this situation.

