1

The diagram shows triangle $A B C$ in which $A B=16 \mathrm{~cm}, \angle A B C=118^{\circ}$ and $\angle A C B=26^{\circ}$ ． Use the sine rule to find the length $A C$ to 3 significant figures．

2

The diagram shows triangle $P Q R$ in which $P Q=8.2 \mathrm{~cm}, P R=11.4 \mathrm{~cm}$ and $\angle P Q R=57^{\circ}$ ． Use the sine rule to find the size of $\angle P R Q$ in degrees to 1 decimal place．

In triangle $A B C, A B=16.2 \mathrm{~cm}, B C=12.3 \mathrm{~cm}$ and $\angle B A C=37^{\circ}$ ．
Find the two possible sizes of $\angle A C B$ and the corresponding lengths of $A C$ ．
4

The diagram shows triangle $X Y Z$ in which $X Y=15.3 \mathrm{~cm}, Y Z=7.8 \mathrm{~cm}$ and $\angle X Y Z=31.5^{\circ}$ ． Use the cosine rule to find the length $X Z$ ．

The diagram shows triangle $A B C$ in which $A B=18 \mathrm{~cm}, A C=13 \mathrm{~cm}$ and $B C=17 \mathrm{~cm}$ ．
Use the cosine rule to find the size of $\angle A C B$ ．
Find the length x in each triangle．
a

b

c

7 Find the angle θ in each triangle．
a

b

c

8 Find the area of each of the following triangles．
a

b

c

9 Joanne walks 4.2 miles on a bearing of 138° ．She then walks 7.8 miles on a bearing of 251° ．
a Calculate how far Joanne is from the point where she started．
b Find，as a bearing，the direction in which Joanne would have to walk in order to return to the point where she started．

10 A ferry and a cargo ship are both approaching the same port．The ferry is 3.2 km from the port on a bearing of 076° and the cargo ship is 6.9 km from the port on a bearing of 323° ．
Find the distance between the two vessels and the bearing of the cargo ship from the ferry．

11

The diagram shows triangle $A B C$ in which $A B=10.4 \mathrm{~cm}, A C=11.0 \mathrm{~cm}$ and $B C=9.7 \mathrm{~cm}$ ．
Find the area of the triangle to 3 significant figures．
12

The diagram shows triangle $X Y Z$ in which $X Y=22.5 \mathrm{~cm}$ and $\angle X Y Z=34^{\circ}$ ．
Given that the area of the triangle is $100 \mathrm{~cm}^{2}$ ，find the length $X Z$ ．

1 Convert each angle from degrees to radians，giving your answers in terms of π ．
a 180°
b 30°
c 45°
d 720°
e 18°
f 120°
g 15°
h 40°
i 270°
j 7.5°
k 144°
l 220°

2 Convert each angle from degrees to radians，giving your answers to 2 decimal places．
a 10°
b 38°
c 291°
d 63.8°
e 507°
f 126.2°

3 Convert each angle from radians to degrees．
a 2π
b $\frac{\pi}{3}$
c $\frac{\pi}{2}$
d $\frac{3 \pi}{4}$
e $\frac{\pi}{18}$
f $\frac{\pi}{30}$
g $\frac{5 \pi}{6}$
h $\frac{\pi}{8}$
i 3π
j $\frac{2 \pi}{15}$
k $\frac{7 \pi}{3}$
l $\frac{9 \pi}{20}$

4 Convert each angle from radians to degrees，giving your answers to 1 decimal place．
a $2^{\text {c }}$
b 0.5^{c}
c $3.1^{\text {c }}$
d 1.43°
e $8.7^{\text {c }}$
f $0.742^{\text {c }}$

5 Find，in terms of π ，the length of the arc in each of the following circular sectors．
a

b

c

6 Find，to 3 significant figures，the perimeter of each of the following circular sectors．
a

b

c

7 Find，in radians to 2 decimal places，the angle θ in each of the following circular sectors．
a

b

c

8 The minor arc $A B$ of a circle，centre O ，has length 46.2 cm ．
Given that $\angle A O B=78.5^{\circ}$ ，find
a the distance $O A$ ，
b the perimeter of sector $O A B$ ．

9 Find，in cm^{2} to 1 decimal place，the area of each of the following circular sectors．
a

b

c

$10 P Q$ is an arc of a circle of radius 8 cm ，centre O ．
Given that arc $P Q$ has length 12 cm ，find
a the angle，in radians，subtended by $P Q$ at O ，
b the area of sector $O P Q$ ．

11

The diagram shows a circle of radius 11.6 cm ，centre O ．The arc of the circle $A B$ subtends an angle of 1.4 radians at O ．Find，to 3 significant figures，
a the perimeter of the minor sector $O A B$ ，
b the perimeter of the major sector $O A B$ ，
c the area of the minor sector $O A B$ ，
d the area of the major sector $O A B$ ．

12

The diagram shows a circular sector $O A B$ ．Find the area of
a the sector $O A B$ ，
b the triangle $O A B$ ，
c the shaded segment．

13 Find the area of the shaded segment in each of the following circular sectors．
a

b

c

The diagram shows a sector of a circle of radius 12.6 cm ．
Given that the perimeter of the sector is 31.7 cm ，find its area．

The diagram shows a sector $O A B$ of a circle，centre O and radius 7.3 cm ．
Given that the area of the sector is $38.4 \mathrm{~cm}^{2}$ ，find
a the size of $\angle A O B$ in radians，
b the perimeter of the shaded segment．

The diagram shows a sector of a circle of radius $r \mathrm{~cm}$ ．The area of the sector is $40 \mathrm{~cm}^{2}$ ．
a Show that the perimeter of the sector is $\left(2 r+\frac{80}{r}\right) \mathrm{cm}$ ．
b Hence find the set of values of r for which the perimeter of the sector is less than 26 cm ．

The diagram shows three circles with centres A, B and C ，and radii $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 2 cm respectively．Each circle touches the other two circles．
a Prove that triangle $A B C$ is a right－angled triangle．
b Find $\angle A B C$ in radians to 2 decimal places．
c Show that the area of the shaded region enclosed by the three circles is $1.86 \mathrm{~cm}^{2}$ to 3 significant figures．

5

The diagram shows a company logo which consists of a circle of diameter 10 cm drawn on top of a rectangle measuring 6 cm by 14 cm ．The centres of the circle and rectangle are coincident and the two shapes intersect at A, B, C and D ．
a Find the length of the chord of the circle $A B$ ．
b Show that the perimeter of the logo is 42.5 cm to 3 significant figures．
c Find the area of the logo．

$A B, C D$ and $E F$ are arcs of concentric circles，centre O ，such that $O A C E$ and $O B D F$ are straight lines as shown in the diagram．The area of the shaded region CEFD is denoted by A_{1} and the area of the shaded sector $O A B$ by A_{2} ．
Given that $O A=r \mathrm{~cm}, A C=2 \mathrm{~cm}, O E=8 \mathrm{~cm}$ and $\angle A O B=\theta$ radians，
a find an expression for A_{1} in terms of r and θ ．
Given also that $A_{1}=7 A_{2}$ ，
b show that $r=2.5$

Shape A

Shape B

A girl is playing with a paper clip．She straightens the wire and then bends it to form an equilateral triangle，Shape A above．She then curves one side of the triangle to form a sector of a circle，Shape B above．
Find，to 1 decimal place，the percentage change in the area enclosed by the paper clip when it is changed from Shape A to Shape B ，indicating whether this is an increase or decrease．

1 Find to 3 decimal places the value of
a $\sin 131^{\circ}$
b $\tan 340.5^{\circ}$
c $\cos 418^{\circ}$
d $\sin \left(-165.2^{\circ}\right)$

2 Give the exact value of
a $\cos 60^{\circ}$
b $\sin 45^{\circ}$
c $\tan 45^{\circ}$
d $\cos 30^{\circ}$
e $\sin 90^{\circ}$
f $\tan 30^{\circ}$
g $\cos 120^{\circ}$
h $\sin 135^{\circ}$
i $\tan 210^{\circ}$
j $\cos 225^{\circ}$
k $\sin 300^{\circ}$
l $\tan 120^{\circ}$
m $\cos 330^{\circ}$
n $\tan 150^{\circ}$
o $\cos \left(-60^{\circ}\right)$
p $\sin 405^{\circ}$
q $\tan \left(-45^{\circ}\right)$
r $\sin \left(-240^{\circ}\right)$
s $\tan 570^{\circ}$
t $\cos \left(-150^{\circ}\right)$

3 Find to 3 decimal places the value of
a $\cos 0.42^{\text {c }}$
b $\sin 4.16^{\circ}$
c $\tan \left(-3.1^{c}\right)$
d $\cos 11.25^{\circ}$

4 Give the exact value of
a $\sin \frac{\pi}{6}$
b $\cos \frac{\pi}{2}$
c $\sin \frac{\pi}{4}$
d $\tan \frac{\pi}{3}$
e $\cos \frac{\pi}{3}$
f $\sin \frac{2 \pi}{3}$
g $\tan \frac{3 \pi}{4}$
h $\cos \frac{5 \pi}{6}$
i $\tan \frac{5 \pi}{3}$
j $\cos \frac{5 \pi}{4}$
k $\sin \left(-\frac{\pi}{6}\right)$
l $\tan \left(-\frac{5 \pi}{6}\right)$
m $\sin 3 \pi$
n $\tan \left(-\frac{5 \pi}{4}\right)$
o $\cos \frac{8 \pi}{3}$
p $\sin \left(-\frac{7 \pi}{3}\right)$

5

The graph shows the curve $y=\sin x^{\circ}$ in the interval $0 \leq x \leq 720$ ．
a Write down the coordinates of any points where the curve intersects the coordinate axes．
b Write down the coordinates of the turning points of the curve．

The graph shows the curve $y=\tan x^{\circ}$ in the interval $0 \leq x \leq 720$ ．
a Write down the coordinates of any points where the curve intersects the coordinate axes．
b Write down the equations of the asymptotes．

7 Describe the transformation that maps the graph of $y=\sin x^{\circ}$ onto the graph of
a $y=3 \sin x^{\circ}$
b $y=\sin 4 x^{\circ}$
c $y=\sin (x+60)^{\circ}$
d $y=\sin \left(-x^{\circ}\right)$

8 Sketch each of the following pairs of curves on the same set of axes in the interval $0 \leq x \leq 360^{\circ}$ ．
a $y=\cos x \quad$ and
and $y=3 \cos x$
b $y=\sin x \quad$ and
$y=\sin \left(x-30^{\circ}\right)$
c $y=\cos x$
and
$y=\cos 2 x$
d $y=\tan x \quad$ and
$y=2+\tan x$
e $y=\sin x$
and $y=-\sin x$
f $y=\cos x$ and $y=\cos \left(x+60^{\circ}\right)$
g $y=\tan$
and $\quad y=\tan \frac{1}{2} x$
h $y=\sin x \quad$ and $\quad y=1+\sin x$

9 Each curve is shown for the interval $-180^{\circ} \leq x \leq 180^{\circ}$ ．
Write down the coordinates of the turning points of each curve in this interval．
a

b

c

d

10 Write down the period of each of the following graphs．
a $y=\sin x^{\circ}$
b $y=\tan x^{\circ}$
c $y=2 \cos x^{\circ}$
d $y=\sin 2 x^{\circ}$
e $y=\tan (x+30)^{\circ}$
f $y=\cos \frac{1}{3} x^{\circ}$

11 Sketch each of the following curves for x in the interval $0 \leq x \leq 360$ ．Show the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes．
a $y=\tan x^{\circ}$
b $y=\cos (x+30)^{\circ}$
c $y=\sin 2 x^{\circ}$
d $y=1+\cos x^{\circ}$
e $y=\sin \frac{1}{2} x^{\circ}$
f $y=\tan (x+90)^{\circ}$
g $y=\sin (x-45)^{\circ}$
h $y=-\tan x^{\circ}$
i $y=\cos (x-120)^{\circ}$

12 Sketch each of the following curves for x in the interval $0 \leq x \leq 2 \pi$ ．Show the coordinates of any turning points and the equations of any asymptotes．
a $y=\cos x$
b $y=3 \sin x$
c $y=\tan 2 x$
d $y=\sin \left(x-\frac{\pi}{3}\right)$
e $y=\cos \frac{1}{3} x$
f $y=\sin x-2$
g $y=\tan \left(x+\frac{\pi}{4}\right)$
h $y=\sin \frac{3}{4} x$
i $y=\cos \left(x-\frac{\pi}{6}\right)$

1 Find all values of x in the interval $0 \leq x \leq 360^{\circ}$ such that
a $\sin x=\frac{1}{2}$
b $\tan x=\sqrt{3}$
c $\cos x=0$
d $\sin x=-1$
e $\cos x=\frac{\sqrt{3}}{2}$
f $\sin x=\frac{1}{\sqrt{2}}$
g $\tan x=-1$
h $\cos x=-\frac{1}{2}$
i $\sin x=-\frac{\sqrt{3}}{2}$
j $\tan x=\frac{1}{\sqrt{3}}$
k $\cos x=-\frac{1}{\sqrt{2}}$
l $\tan x=-\sqrt{3}$

2 Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$ giving your answers to 1 decimal place．
a $\cos \theta=0.4$
b $\sin \theta=0.27$
c $\tan \theta=1.6$
d $\sin \theta=0.813$
e $\tan \theta=0.1$
f $\cos \theta=0.185$
g $\sin \theta=-0.6$
h $\tan \theta=-0.7$
i $\cos \theta=-0.39$
j $\tan \theta=-3.4$
k $\cos \theta=-0.636$
l $\sin \theta=-0.203$

3 Solve each equation for x in the interval $0 \leq x \leq 360$ ．
Give your answers to 1 decimal place where appropriate．
a $\sin (x-60)^{\circ}=0.5$
b $\tan (x+30)^{\circ}=1$
c $\cos (x-45)^{\circ}=0.2$
d $\tan (x+30)^{\circ}=0.78$
e $\cos (x+45)^{\circ}=-0.5$
f $\sin (x-60)^{\circ}=-0.89$
g $\cos (x+45)^{\circ}=0.9$
h $\sin (x+30)^{\circ}=0.14$
i $\quad \cos (x-60)^{\circ}=0.6$
j $\sin (x-30)^{\circ}=-0.3$
k $\tan (x-60)^{\circ}=-1.26$
l $\sin 2 x^{\circ}=0.5$
m $\cos 2 x^{\circ}=0.64$
n $\sin 2 x^{\circ}=-0.18$
o $\tan 2 x^{\circ}=-2.74$
p $\sin \frac{1}{2} x^{\circ}=0.703$
q $\tan 3 x^{\circ}=0.591$
r $\cos 2 x^{\circ}=-0.415$

4 Solve each equation for x in the interval $0 \leq x \leq 2 \pi$ giving your answers in terms of π ．
a $\sin x=0$
b $\cos x=\frac{1}{2}$
c $\tan x=1$
d $\cos x=-1$
e $\tan x=-\frac{1}{\sqrt{3}}$
f $\sin x=-\frac{1}{\sqrt{2}}$
g $\tan \left(x+\frac{\pi}{6}\right)=\sqrt{3}$
h $\sin \left(x-\frac{\pi}{4}\right)=\frac{1}{2}$
i $\quad \cos \left(x+\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$
j $\quad \sin \left(x+\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$
k $\cos 2 x=-\frac{1}{\sqrt{2}}$
l $\tan 3 x=\frac{1}{\sqrt{3}}$

5 Solve each equation for θ in the interval $-180^{\circ} \leq \theta \leq 180^{\circ}$ ．
Give your answers to 1 decimal place where appropriate．
a $\cos \theta=0$
b $\tan 2 \theta+1=0$
c $\sin \left(\theta+60^{\circ}\right)=0.291$
d $2 \tan \left(\theta-15^{\circ}\right)=3.7$
e $\sin 2 \theta-0.3=0$
f $4 \cos 3 \theta=2$
g $1+\sin \left(\theta+110^{\circ}\right)=0$
h $5 \cos \left(\theta-27^{\circ}\right)=3$
i $7-3 \tan \theta=0$
j $3+8 \cos 2 \theta=0$
k $2+6 \tan \left(\theta+92^{\circ}\right)=0$
l $1-4 \sin \frac{1}{3} \theta=0$

6 Solve each equation for x in the interval $0 \leq x \leq 180^{\circ}$ ．
Give your answers to 1 decimal place where appropriate．
a $\tan \left(2 x+30^{\circ}\right)=1$
b $\sin \left(2 x-15^{\circ}\right)=0$
c $\cos \left(2 x+70^{\circ}\right)=0.5$
d $\sin \left(2 x+210^{\circ}\right)=0.26$
e $\cos \left(2 x-38^{\circ}\right)=-0.64$
f $\tan \left(2 x-56^{\circ}\right)=-0.32$
g $\cos \left(3 x-24^{\circ}\right)=0.733$
h $\tan \left(3 x+60^{\circ}\right)=-1.9$
i $\sin \left(\frac{1}{2} x+18^{\circ}\right)=0.572$

7 Solve each equation for x in the interval $0 \leq x \leq 2 \pi$ ，giving your answers to 2 decimal places．
a $\tan x=0.52$
b $\cos 2 x=0.315$
c $\sin \left(x+\frac{\pi}{4}\right)=0.7$
d $3 \cos x+1=0$
e $\sin \frac{1}{2} x=0.09$
f $\tan 2 x=-0.225$
g $3-4 \sin \left(x-\frac{\pi}{3}\right)=0$
h $\tan \left(2 x+\frac{\pi}{6}\right)=2$
i $\cos 3 x=-0.81$
j $5+3 \tan x=0$
k $\cos \left(2 x-\frac{\pi}{2}\right)=-0.34$
l $1+6 \sin 2 x=0$

8 a Solve the equation

$$
2 y^{2}-3 y+1=0 .
$$

b Hence，find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
2 \sin ^{2} x-3 \sin x+1=0
$$

9 Solve each equation for θ in the interval $0 \leq \theta \leq 360$ ．
Give your answers to 1 decimal place where appropriate．
a $\sin ^{2} \theta^{\circ}=0.75$
b $\quad 1-\tan ^{2} \theta^{\circ}=0$
c $2 \cos ^{2} \theta^{\circ}+\cos \theta^{\circ}=0$
d $\sin \theta^{\circ}\left(4 \cos \theta^{\circ}-1\right)=0$
e $4 \sin \theta^{\circ}=\sin \theta^{\circ} \tan \theta^{\circ}$
f $\left(2 \cos \theta^{\circ}-1\right)\left(\cos \theta^{\circ}+1\right)=0$
g $\tan ^{2} \theta^{\circ}-3 \tan \theta^{\circ}+2=0$
h $3 \sin ^{2} \theta^{\circ}-7 \sin \theta^{\circ}+2=0$
i $\tan ^{2} \theta^{\circ}-\tan \theta^{\circ}=6$
j $6 \cos ^{2} \theta^{\circ}-\cos \theta^{\circ}-2=0$
k $4 \sin ^{2} \theta^{\circ}+3=8 \sin \theta^{\circ}$
l $\cos ^{2} \theta^{\circ}+2 \cos \theta^{\circ}-1=0$
$\mathbf{m} \tan ^{2} \theta^{\circ}+3 \tan \theta^{\circ}-1=0$
n $3 \sin ^{2} \theta^{\circ}+\sin \theta^{\circ}=1$

10 a Sketch the curve $y=\cos x^{\circ}$ for x in the interval $0 \leq x \leq 360$ ．
b Sketch on the same diagram the curve $y=\cos (x+90)^{\circ}$ for x in the interval $0 \leq x \leq 360$ ．
c Using your diagram，find all values of x in the interval $0 \leq x \leq 360$ for which

$$
\cos x^{\circ}=\cos (x+90)^{\circ} .
$$

11 a Sketch the curves $y=\cos x^{\circ}$ and $y=\cos 3 x^{\circ}$ on the same set of axes for x in the interval $0 \leq x \leq 360$ ．
b Solve，for x in the interval $0 \leq x \leq 360$ ，the equation

$$
\cos x^{\circ}=\cos 3 x^{\circ}
$$

c Hence solve，for x in the interval $0 \leq x \leq 180$ ，the equation

$$
\cos 2 x^{\circ}=\cos 6 x^{\circ} .
$$

1 a Given that $4 \sin x+\cos x=0$ ，show that $\tan x=-\frac{1}{4}$ ．
b Hence，find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
4 \sin x+\cos x=0
$$

giving your answers to 1 decimal place．
2 a Show that

$$
5 \sin ^{2} x+5 \sin x+4 \cos ^{2} x \equiv \sin ^{2} x+5 \sin x+4 .
$$

b Hence，find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
5 \sin ^{2} x+5 \sin x+4 \cos ^{2} x=0
$$

3 Solve each equation for x in the interval $0 \leq x \leq 360^{\circ}$ ．
Give your answers to 1 decimal place where appropriate．
a $2 \sin x-\cos x=0$
b $3 \sin x=4 \cos x$
c $\cos ^{2} x+3 \sin x-3=0$
d $3 \cos ^{2} x-\sin ^{2} x=2$
e $2 \sin ^{2} x+3 \cos x=3$
f $3 \cos ^{2} x=5(1-\sin x)$
g $3 \sin x \tan x=8$
h $\cos x=3 \tan x$
i $3 \sin ^{2} x-5 \cos x+2 \cos ^{2} x=0$
j $2 \sin ^{2} x+7 \sin x-2 \cos ^{2} x=0$
k $3 \sin x-2 \tan x=0$
l $\sin ^{2} x-9 \cos x-\cos ^{2} x=5$

4 Solve each equation for θ in the interval $-\pi \leq \theta \leq \pi$ giving your answers in terms of π ．
a $4 \cos ^{2} \theta=1$
b $4 \sin ^{2} \theta+4 \sin \theta+1=0$
c $\cos ^{2} \theta+2 \cos \theta-3=0$
d $3 \sin ^{2} \theta-\cos ^{2} \theta=0$
e $4 \sin ^{2} \theta-5 \sin \theta+2 \cos ^{2} \theta=0$
f $\sin ^{2} \theta-3 \cos \theta-\cos ^{2} \theta=2$

5 Prove that
a $(\sin x+\cos x)^{2} \equiv 1+2 \sin x \cos x$
b $\frac{1}{\cos x}-\cos x \equiv \sin x \tan x, \quad \cos x \neq 0$
c $\frac{\cos ^{2} x}{1-\sin x} \equiv 1+\sin x, \quad \sin x \neq 1$
d $\frac{1+\sin x}{\cos x} \equiv \frac{\cos x}{1-\sin x}, \quad \cos x \neq 0$

6 a Prove the identity

$$
(\cos x-\tan x)^{2}+(\sin x+1)^{2} \equiv 2+\tan ^{2} x .
$$

b Hence find，in terms of π ，the values of x in the interval $0 \leq x \leq 2 \pi$ such that

$$
(\cos x-\tan x)^{2}+(\sin x+1)^{2}=3 .
$$

$$
\mathrm{f}(x) \equiv \cos ^{2} x+2 \sin x, \quad 0 \leq x \leq 2 \pi .
$$

a Prove that $\mathrm{f}(x)$ can be expressed in the form

$$
\mathrm{f}(x)=2-(\sin x-1)^{2}
$$

b Hence deduce the maximum value of $\mathrm{f}(x)$ and the value of x for which this occurs．

1 Find，in terms of π ，the values of x in the interval $0 \leq x \leq 2 \pi$ for which
a $3 \tan x-\sqrt{3}=0$ ，
b $2 \cos \left(x+\frac{\pi}{3}\right)+\sqrt{3}=0$ ．
2 Given that $\cos A=\sqrt{3}-1$ ，
a find the value of $\sin ^{2} A$ in the form $p \sqrt{3}+q$ where p and q are integers，
b show that $\tan ^{2} A=\frac{\sqrt{3}}{2}$ ．
3

The diagram shows sector $O A B$ of a circle，centre O ，radius 8 cm ，in which $\angle A O B=45^{\circ}$ ．
a Find the perimeter of the sector in centimetres to 1 decimal place．
b Show that the area of the shaded segment is $8(\pi-2 \sqrt{2}) \mathrm{cm}^{2}$ ．
4 Find，to 1 decimal place，the values of θ in the interval $0 \leq \theta \leq 360^{\circ}$ for which

$$
2 \sin ^{2} \theta+\sin \theta-\cos ^{2} \theta=2
$$

5 Solve，for x in the interval $-\pi \leq x \leq \pi$ ，the equation

$$
3 \sin ^{2} x=4(1-\sin x)
$$

giving your answers to 2 decimal places．
6

The diagram shows the curves $y=2 \sin x$ and $y=3 \cos x$ for x in the interval $0 \leq x \leq 2 \pi$ ．
Find，to 2 decimal places，the coordinates of the points where the curves intersect in this interval．
7 a Sketch the curve $y=\cos 2 x^{\circ}$ for x in the interval $0 \leq x \leq 360$ ．
b Find the values of x in the interval $0 \leq x \leq 360$ for which

$$
\cos 2 x^{\circ}=-\frac{1}{2}
$$

8 Solve，for θ in the interval $0 \leq \theta \leq 360$ ，the equation

$$
12 \cos \theta^{\circ}=7 \tan \theta^{\circ}
$$

giving your answers to 1 decimal place．
$9 \quad$ Given that $\quad \tan 15^{\circ}=\frac{\tan 60^{\circ}-\tan 45^{\circ}}{1+\left(\tan 60^{\circ} \times \tan 45^{\circ}\right)}$ ，
a show that $\tan 15^{\circ}=2-\sqrt{3}$ ，
b find the exact value of $\tan 345^{\circ}$ ．
10 Find，to an appropriate degree of accuracy，the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\sin ^{2} x+5 \cos x-3 \cos ^{2} x=2
$$

11

The diagram shows triangle $A B C$ in which $A C=18 \mathrm{~cm}, \angle B A C=41^{\circ}$ and $\angle A C B=26^{\circ}$ ．
Find to 3 significant figures
a the length $B C$ ，
b the area of triangle $A B C$ ．
12 Solve，for θ in the interval $0 \leq \theta \leq 360^{\circ}$ ，the equation

$$
(6 \cos \theta-1)(\cos \theta+1)=3 .
$$

13 Find，in degrees to 1 decimal place，the values of x in the interval $-180^{\circ} \leq x \leq 180^{\circ}$ for which

$$
\sin ^{2} x+5 \sin x=2 \cos ^{2} x .
$$

14 Prove that
a $\sin ^{4} \theta-2 \sin ^{2} \theta \equiv \cos ^{4} \theta-1$ ，
b $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta} \equiv \frac{2}{\sin \theta}$ ，for $\sin \theta \neq 0$ ．

The gears in a toy are shown in the diagram above．
A thin rubber band passes around two circular discs．The centres of the discs are at P and Q where $P Q=8 \mathrm{~cm}$ and their radii are 2 cm and 5 cm respectively．The sections of the rubber band not in contact with the discs，$R S$ and $T U$ ，are assumed to be taught．
a Show that $\angle P Q R=1.186$ radians to 3 decimal places．
b Find the length $R S$ ．
c Find the length of the rubber band in this situation．

