1 In each case，find any values of x for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ ．
a $y=x^{2}+6 x$
b $y=4 x^{2}+2 x+1$
c $y=x^{3}-12 x$
d $y=4+9 x^{2}-x^{3}$
e $y=x^{3}-5 x^{2}+3 x$
f $y=x+\frac{9}{x}$
g $y=\left(x^{2}+3\right)(x-3)$
h $y=x^{\frac{1}{2}}-2 x$

2 Find the set of values of x for which $\mathrm{f}(x)$ is increasing when
a $\mathrm{f}(x) \equiv 2 x^{2}+2 x+1$
b $\mathrm{f}(x) \equiv 3 x^{2}-2 x^{3}$
c $\mathrm{f}(x) \equiv 3 x^{3}-x-7$
d $\mathrm{f}(x) \equiv x^{3}+6 x^{2}-15 x+8$
e $\mathrm{f}(x) \equiv x(x-6)^{2}$
f $\mathrm{f}(x) \equiv 2 x+\frac{8}{x}$

3 Find the set of values of x for which $\mathrm{f}(x)$ is decreasing when
a $\mathrm{f}(x) \equiv x^{3}+2 x^{2}+1$
b $\mathrm{f}(x) \equiv 5+27 x-x^{3}$
c $\mathrm{f}(x) \equiv\left(x^{2}-2\right)(2 x-1)$

4

$$
\mathrm{f}(x) \equiv x^{3}+k x^{2}+3
$$

Given that $(x+1)$ is a factor of $\mathrm{f}(x)$ ，
a find the value of the constant k ，
b find the set of values of x for which $\mathrm{f}(x)$ is increasing．
5 Find the coordinates of any stationary points on each curve．
a $y=x^{2}+2 x$
b $y=5 x^{2}-4 x+1$
c $y=x^{3}-3 x+4$
d $y=4 x^{3}+3 x^{2}+2$
e $y=2 x+3+\frac{8}{x}$
f $y=x^{3}-9 x^{2}-21 x+11$
g $y=\frac{1}{x}-4 x^{2}$
h $y=2 x^{\frac{3}{2}}-6 x$
i $y=9 x^{\frac{2}{3}}-2 x+5$

6 Find the coordinates of any stationary points on each curve．By evaluating $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at each stationary point，determine whether it is a maximum or minimum point．
a $y=5+4 x-x^{2}$
b $y=x^{3}-3 x$
c $y=x^{3}+9 x^{2}-8$
d $y=x^{3}-6 x^{2}-36 x+15$
e $y=x^{4}-8 x^{2}-2$
f $y=9 x+\frac{4}{x}$
g $y=x-6 x^{\frac{1}{2}}$
h $y=3-8 x+7 x^{2}-2 x^{3}$
i $y=\frac{x^{4}+16}{2 x^{2}}$

7 Find the coordinates of any stationary points on each curve and determine whether each stationary point is a maximum，minimum or point of inflexion．
a $y=x^{2}-x^{3}$
b $y=x^{3}+3 x^{2}+3 x$
c $y=x^{4}-2$
d $y=4-12 x+6 x^{2}-x^{3}$
e $y=x^{2}+\frac{16}{x}$
f $y=x^{4}+4 x^{3}-1$

8 Sketch each of the following curves showing the coordinates of any turning points．
a $y=x^{3}+3 x^{2}$
b $y=x+\frac{1}{x}$
c $y=x^{3}-3 x^{2}+3 x-1$
d $y=3 x-4 x^{\frac{1}{2}}$
e $y=x^{3}+4 x^{2}-3 x-5$
f $y=\left(x^{2}-2\right)\left(x^{2}-6\right)$

C2 DIFFERENTIATION

1

The diagram shows a baking tin in the shape of an open－topped cuboid made from thin metal sheet．The base of the tin measures $x \mathrm{~cm}$ by $2 x \mathrm{~cm}$ ，the height of the tin is $h \mathrm{~cm}$ and the volume of the tin is $4000 \mathrm{~cm}^{3}$ ．
a Find an expression for h in terms of x ．
b Show that the area of metal sheet used to make the tin，$A \mathrm{~cm}^{2}$ ，is given by

$$
A=2 x^{2}+\frac{12000}{x} .
$$

c Use differentiation to find the value of x for which A is a minimum．
d Find the minimum value of A ．
e Show that your value of A is a minimum．

The diagram shows a closed plastic cylinder used for making compost．The radius of the base and the height of the cylinder are $r \mathrm{~cm}$ and $h \mathrm{~cm}$ respectively and the surface area of the cylinder is $30000 \mathrm{~cm}^{2}$ ．
a Show that the volume of the cylinder，$V \mathrm{~cm}^{3}$ ，is given by

$$
V=15000 r-\pi r^{3} .
$$

b Find the maximum volume of the cylinder and show that your value is a maximum．

The diagram shows a square prism of length $l \mathrm{~cm}$ and cross－section $x \mathrm{~cm}$ by $x \mathrm{~cm}$ ．
Given that the surface area of the prism is $k \mathrm{~cm}^{2}$ ，where k is a constant，
a show that $l=\frac{k-2 x^{2}}{4 x}$ ，
b use calculus to prove that the maximum volume of the prism occurs when it is a cube．

C2 DIFFERENTIATION

$$
\mathrm{f}(x) \equiv 2 x^{3}+5 x^{2}-1 .
$$

a Find $\mathrm{f}^{\prime}(x)$ ．
b Find the set of values of x for which $\mathrm{f}(x)$ is increasing．
2 The curve C has the equation $y=x^{3}-x^{2}+2 x-4$ ．
a Find an equation of the tangent to C at the point $(1,-2)$ ．Give your answer in the form $a x+b y+c=0$ ，where a, b and c are integers．
b Prove that the curve C has no stationary points．
3 A curve has the equation $y=\sqrt{x}+\frac{4}{x}$ ．
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ ．
b Find the coordinates of the stationary point of the curve and determine its nature．

$$
\mathrm{f}(x) \equiv x^{3}+6 x^{2}+9 x .
$$

a Find the coordinates of the points where the curve $y=\mathrm{f}(x)$ meets the x－axis．
b Find the set of values of x for which $\mathrm{f}(x)$ is decreasing．
c Sketch the curve $y=\mathrm{f}(x)$ ，showing the coordinates of any stationary points．

The graph shows the height，$h \mathrm{~cm}$ ，of the letters on a website advert t seconds after the advert appears on the screen．
For t in the interval $0 \leq t \leq 2, h$ is given by the equation

$$
h=2 t^{4}-8 t^{3}+8 t^{2}+1 .
$$

For larger values of t ，the variation of h over this interval is repeated every 2 seconds．
a Find $\frac{\mathrm{d} h}{\mathrm{~d} t}$ for t in the interval $0 \leq t \leq 2$ ．
b Find the rate at which the height of the letters is increasing when $t=0.25$
c Find the maximum height of the letters．
6 The curve C has the equation $y=x^{3}+3 k x^{2}-9 k^{2} x$ ，where k is a non－zero constant．
a Show that C is stationary when

$$
x^{2}+2 k x-3 k^{2}=0
$$

b Hence，show that C is stationary at the point with coordinates $\left(k,-5 k^{3}\right)$ ．
c Find，in terms of k ，the coordinates of the other stationary point on C ．

7

The diagram shows a solid triangular prism．The cross－section of the prism is an equilateral triangle of side $x \mathrm{~cm}$ and the length of the prism is $l \mathrm{~cm}$ ．
Given that the volume of the prism is $250 \mathrm{~cm}^{3}$ ，
a find an expression for l in terms of x ，
b show that the surface area of the prism，$A \mathrm{~cm}^{2}$ ，is given by

$$
A=\frac{\sqrt{3}}{2}\left(x^{2}+\frac{2000}{x}\right) .
$$

Given that x can vary，
c find the value of x for which A is a minimum，
d find the minimum value of A in the form $k \sqrt{3}$ ，
e justify that the value you have found is a minimum．

$$
\mathrm{f}(x) \equiv x^{3}+4 x^{2}+k x+1 .
$$

a Find the set of values of the constant k for which the curve $y=\mathrm{f}(x)$ has two stationary points． Given that $k=-3$ ，
b find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$ ．

The diagram shows the curve with equation $y=x^{\frac{1}{2}}-4+3 x^{-\frac{1}{2}}$ ．The curve crosses the x－axis at the points A and B and has a minimum point at C ．
a Find the coordinates of A and B ．
b Find the coordinates of C ，giving its y－coordinate in the form $a \sqrt{3}+b$ ，where a and b are integers．

$$
\mathrm{f}(x)=x^{3}-3 x^{2}+4
$$

a Show that $(x+1)$ is a factor of $\mathrm{f}(x)$ ．
b Fully factorise $\mathrm{f}(x)$ ．
c Hence state，with a reason，the coordinates of one of the turning points of the curve $y=\mathrm{f}(x)$ ．
d Using differentiation，find the coordinates of the other turning point of the curve $y=\mathrm{f}(x)$ ．

