C1

1 Sketch and label each pair of graphs on the same set of axes showing the coordinates of any points where the graphs intersect．Write down the equations of any asymptotes．
a $y=x^{2}$
and $y=x^{3}$
b $y=x^{2}$ and $y=x^{4}$
c $y=\frac{1}{x} \quad$ and $\quad y=\frac{1}{x^{2}}$
d $y=x \quad$ and $\quad y=\sqrt{x}$
e $y=x^{2}$ and $y=3 x^{2}$
f $y=\frac{1}{x} \quad$ and $\quad y=\frac{2}{x}$

$$
\mathrm{f}(x)=(x-1)(x-3)(x-4)
$$

a Find $\mathrm{f}(0)$ ．
b Write down the solutions of the equation $\mathrm{f}(x)=0$ ．
c Sketch the curve $y=\mathrm{f}(x)$ ．
3 Sketch each graph showing the coordinates of any points of intersection with the coordinate axes．
a $y=(x+1)(x-1)(x-3)$
b $y=2 x(x-1)(x-5)$
c $y=-(x+2)(x+1)(x-2)$
d $y=x^{2}(x-4)$
e $y=3 x(2+x)(1-x)$
f $y=(x+2)(x-1)^{2}$

4 a Factorise fully $x^{3}+6 x^{2}+9 x$ ．
b Hence，sketch the curve $y=x^{3}+6 x^{2}+9 x$ ，showing the coordinates of any points where the curve meets the coordinate axes．

5 Given that the constants p and q are such that $p>q>0$ ，sketch each of the following graphs showing the coordinates of any points of intersection with the coordinate axes．
a $y=(x-p)(x-q)^{2}$
b $y=(x-p)\left(x^{2}-q^{2}\right)$

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which has a turning point at $(1,-2)$ and crosses the y－axis at the point $(0,-5)$ ．
Given that $\mathrm{f}(x)$ is a quadratic function，find an expression for $\mathrm{f}(x)$ ．

The diagram shows the curve with equation $y=a x^{3}+b x^{2}+c x+d$ ．
Given that the curve crosses the y－axis at the point $(0,-8)$ and crosses the x－axis at the points $(-2,0),(1,0)$ and $(2,0)$ ，find the values of the constants a, b, c and d ．

8

The diagram shows the graph of $y=\mathrm{f}(x)$ ．
Use the graph to write down the number of solutions that exist to each of the following equations．
a $\mathrm{f}(x)=1$
b $\mathrm{f}(x)=3$
c $\mathrm{f}(x)=-1$
d $\mathrm{f}(x)=0$

9 a Sketch on the same set of axes the graphs of $y=x^{2}$ and $y=1-2 x$ ．
b Hence state the number of roots that the equation $x^{2}+2 x-1=0$ has and give a reason for your answer．

10 a Find the coordinates of the turning point of the curve $y=x^{2}+2 x-3$ ．
b By sketching two suitable graphs on the same set of axes，show that the equation

$$
x^{2}+2 x-3-\frac{1}{x}=0
$$

has one positive and two negative real roots．
11 Show that the line $y=x-3$ is a tangent to the curve $y=x^{2}-5 x+6$ ．
12 a Solve the simultaneous equations

$$
\begin{aligned}
& y=3 x+7 \\
& y=x^{2}+5 x+8
\end{aligned}
$$

b Hence，describe the geometrical relationship between the straight line $y=3 x+7$ and the curve $y=x^{2}+5 x+8$ ．

13 a Find the coordinates of the points where the straight line $y=x+6$ meets the curve $y=x^{3}-4 x^{2}+x+6$ ．
b Given that

$$
x^{3}-4 x^{2}+x+6 \equiv(x+1)(x-2)(x-3)
$$

sketch the straight line $y=x+6$ and the curve $y=x^{3}-4 x^{2}+x+6$ on the same diagram， showing the coordinates of the points where the curve crosses the coordinate axes．

14 Find the value of the constant k such that the straight line with equation $y=3 x+k$ is a tangent to the curve with equation $y=2 x^{2}-5 x+1$ ．

15 Find the set of values of the constant a for which the line $y=2-5 x$ intersects the curve $y=x^{2}+a x+18$ at two points．

16 The curve C has the equation $y=x^{2}-2 x+6$ ．
a Find the values of p for which the line $y=p x+p$ is a tangent to the curve C ．
b Prove that there are no real values of q for which the line $y=q x+7$ is a tangent to the curve C ．

C1 Graphs of Functions

1 Describe how the graph of $y=\mathrm{f}(x)$ is transformed to give the graph of
a $y=\mathrm{f}(x-1)$
b $y=\mathrm{f}(x)-3$
c $y=2 \mathrm{f}(x)$
d $y=\mathrm{f}(4 x)$
e $y=-\mathrm{f}(x)$
f $y=\frac{1}{5} \mathrm{f}(x)$
g $y=\mathrm{f}(-x)$
h $y=\mathrm{f}\left(\frac{2}{3} x\right)$

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which crosses the coordinate axes at the points $(0,3)$ and $(4,0)$ ．

Showing the coordinates of any points of intersection with the axes，sketch on separate diagrams the graphs of
a $y=3 \mathrm{f}(x)$
b $y=\mathrm{f}(x+4)$
c $y=-\mathrm{f}(x)$
d $y=\mathrm{f}\left(\frac{1}{2} x\right)$

3 Find and simplify an equation of the graph obtained when
a the graph of $y=2 x+5$ is translated by 1 unit in the positive y－direction，
b the graph of $y=1-4 x$ is stretched by a factor of 3 in the y－direction，about the x－axis，
c the graph of $y=3 x+1$ is translated by 4 units in the negative x－direction，
d the graph of $y=4 x-7$ is reflected in the x－axis．

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which has a turning point at $(2,4)$ and crosses the y－axis at the point $(0,6)$ ．
Showing the coordinates of the turning point and of any points of intersection with the axes， sketch on separate diagrams the graphs of
a $y=\mathrm{f}(x)-3$
b $y=\mathrm{f}(x+2)$
c $y=\mathrm{f}(2 x)$
d $y=\frac{1}{2} \mathrm{f}(x)$

5 Describe a single transformation that would map the graph of $y=x^{3}$ onto the graph of
a $y=4 x^{3}$
b $y=(x-2)^{3}$
c $y=-x^{3}$
d $y=x^{3}+5$

6 Describe a single transformation that would map the graph of $y=x^{2}+2$ onto the graph of
a $y=2 x^{2}+4$
b $y=x^{2}-5$
c $y=\frac{1}{9} x^{2}+2$
d $y=x^{2}+4 x+6$

7 Find and simplify an equation of the graph obtained when
a the graph of $y=x^{2}+2 x$ is translated by 1 unit in the positive x－direction，
b the graph of $y=x^{2}-4 x+5$ is stretched by a factor of $\frac{1}{3}$ in the x－direction，about the y－axis．
c the graph of $y=x^{2}+x-6$ is reflected in the y－axis，
d the graph of $y=2 x^{2}-3 x$ is stretched by a factor of 2 in the x－direction，about the y－axis．

8

$$
\mathrm{f}(x) \equiv x^{2}-4 x .
$$

a Find the coordinates of the turning point of the graph $y=\mathrm{f}(x)$ ．
b Sketch each pair of graphs on the same set of axes showing the coordinates of the turning point of each graph．

$$
\text { i } y=\mathrm{f}(x) \text { and } y=3+\mathrm{f}(x) \quad \text { ii } y=\mathrm{f}(x) \text { and } y=\mathrm{f}(x-2) \quad \text { iii } y=\mathrm{f}(x) \text { and } y=\mathrm{f}(2 x)
$$

9 Sketch each pair of graphs on the same set of axes．
a $y=x^{2} \quad$ and $\quad y=(x+3)^{2}$
b $y=x^{3} \quad$ and $y=x^{3}+4$
c $y=\frac{1}{x} \quad$ and $\quad y=\frac{1}{x-2}$
d $y=\sqrt{x}$ and $y=\sqrt{2 x}$

10 a Describe two different transformations，each of which would map the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{1}{3 x}$ ．
b Describe two different transformations，each of which would map the graph of $y=x^{2}$ onto the graph of $y=4 x^{2}$ ．

11

$$
\mathrm{f}(x) \equiv(x+4)(x+2)(x-1)
$$

Showing the coordinates of any points of intersection with the axes，sketch on separate diagrams the graphs of
a $y=\mathrm{f}(x)$
b $y=\mathrm{f}(x-4)$
c $y=\mathrm{f}(-x)$
d $y=\mathrm{f}(2 x)$

12 The curve $y=\mathrm{f}(x)$ is a parabola and the coordinates of its turning point are (a, b) ． Write down，in terms of a and b ，the coordinates of the turning point of the graph
a $y=3 \mathrm{f}(x)$
b $y=4+\mathrm{f}(x)$
c $y=\mathrm{f}(x+1)$
d $y=\mathrm{f}\left(\frac{1}{3} x\right)$

The diagram shows the curve with equation $y=\mathrm{f}(2 x)$ which crosses the coordinate axes at the points $(-2,0)$ and $(0,1)$ ．
Showing the coordinates of any points of intersection with the coordinate axes，sketch on separate diagrams the curves
a $y=3 \mathrm{f}(2 x)$
b $y=\mathrm{f}(x)$

