Solomon Practice Paper

Statistics S1 - H

Time allowed:	90	minutes
---------------	----	---------

Name:

Teacher:

Question	Points	Score
1	5	
2	8	
3	9	
4	10	
5	13	
6	13	
7	17	
Total:	75	

How I can achieve better:

- •

Last updated: July 14, 2025

1. The discrete random variable X has the following probability distribution.

x	k	k+4	2k
$\Pr(X = x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{2}$

(a) Find and simplify an expression in terms of k for E(X).

Given that E(X) = 9,

(b) find the value of k.

[2]

[3]

Total: 5

- 2. (a) Explain briefly what is meant by a statistical model.
 - (b) State, with a reason, whether or not the normal distribution might be suitable for modelling [6] each of the following:
 - i. The number of children in a family;
 - ii. The time taken for a particular employee to cycle to work each day using the same route;
 - iii. The quarterly electricity bills for a particular house.

[2]

3. The probability that Ajita gets up before 6.30 am in the morning is 0.7.

The probability that she goes for a run in the morning is 0.35.

The probability that Ajita gets up after 6.30 am and does not go for a run is 0.22.

Let A represent the event that Ajita gets up before 6.30 am and B represent the event that she goes for a run in the morning.

Find

(a) $P(A \cup B)$,[2](b) $P(A \cap B')$,[2](c) P(B|A).[3](d) State, with a reason, whether or not events A and B are independent.[2]

4. A company produces jars of English Honey. The weight of the glass jars used is normally distributed with a mean of 122.3 g and a standard deviation of 2.6 g.

Calculate the probability that a randomly chosen jar will weigh

- (a) less than 127 g,
- (b) less than 121.5 g.

The weight of honey put into each jar by a machine is normally distributed with a standard deviation of 1.6 g. The machine operator can adjust the mean weight of the honey put into each jar without changing the standard deviation.

(c) Find, correct to 4 significant figures, the minimum that the mean weight can be set to such [4] that at most 1 in 20 of the jars will contain less than 454 g.

Total: 10

[3]

[3]

Last updated: July 14, 2025

- 5. The letters of the word DISTRIBUTION are written on separate cards. The cards are then shuffled and the top three are turned over. Let the random variable V be the number of vowels that are turned over.
 - (a) Show that $P(V = 1) = \frac{21}{44}$.[3](b) Find the probability distribution of V.[4](c) Find E(V) and Var(V).[6]Total: 13

www.CasperYC.club

6. A cinema recorded the number of people at each showing of each film during a one-week period. The results are summarised in the table below.

Number of people	Number of showings		
1-40	36		
41 - 60	20		
61 - 80	33		
81 - 100	24		
101 - 150	36		
151 - 200	39		
201 - 300	52		

- (a) Draw a histogram on graph paper to illustrate these data.
- (b) Calculate estimates of the median and quartiles of these data.
- (c) Use your answers to part (b) to show that the data is positively skewed.

Total: 13

[4]

[6]

[3]

7. A new vaccine is tested over a six-month period in one health authority.

The table shows the number of new cases of the disease, d, reported in the m^{th} month after the trials began.

m	1	2	3	4	5	6
d	102	69	61	58	52	48

A doctor suggests that a relationship of the form d = a + bx where $x = \frac{1}{m}$ can be used to model the situation.

- (a) Tabulate the values of x corresponding to the given values of d and plot a scatter diagram [5] of d against x.
- (b) Explain how your scatter diagram supports the suggested model.

You may use

$$\sum x = 2.45, \quad \sum d = 390, \quad \sum x^2 = 1.491, \quad \sum xd = 189.733$$

- (c) Find an equation of the regression line d on x in the form d = a + bx. [7]
- (d) Use your regression line to estimate how many new cases of the disease there will be in the [3] 13th month after the trial began.
- (e) Comment on the reliability of your answer to part (d).

Total: 17

[1]

[1]

