Solomon Practice Paper

Pure Mathematics 6G

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	3	
2	6	
3	7	
4	9	
5	10	
6	10	
7	13	
8	17	
Total:	75	

How I can achieve better:

•

•

•

[3]

[6]

[7]

[3]

1.

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -4 \\ 1 & 2 & -1 \\ 2 & k & 0 \end{pmatrix}$$

Find the value of the constant k for which **A** is a singular matrix.

2. Solve the equation

$$z^3 = -4 + 4\sqrt{3}i$$
.

giving your answers in the form $r(\cos(\theta) + \mathbf{i}\sin(\theta))$ where r > 0 and $0 \le \theta < 2\pi$.

- 3. Prove by induction that $n(n^2 + 5)$ is divisible by 6 for all positive integers n.
- 4. The point P represents the complex number z in an Argand diagram. Given that

$$|z - 1 + 2\mathbf{i}| = 3$$
,

(a) sketch the locus of P in an Argand diagram.

T, U and V are transformations from the z-plane to the w-plane where

$$T: w=4z,$$

$$U : w = z + 5 - \mathbf{i},$$

$$V : w = z e^{i\frac{\pi}{2}}.$$

(b) Describe exactly the locus of the image of P under each of these transformations.

Total: 9

[6]

- 5. (a) By finding the first four derivatives of $f(x) = \cos(x)$, find the Taylor series expansion of f(x) in ascending powers of $\left(x \frac{\pi}{6}\right)$ up to and including the term in $\left(x \frac{\pi}{6}\right)^3$.
 - (b) Use this expansion to find an estimate of $\cos\left(\frac{\pi}{4}\right)$, giving your answer to 4 decimal places. [3]
 - (c) Find the percentage error in your answer to part (b), giving your answer to 2 significant [2] figures.

Total: 10

6. Given that y satisfies the differential equation

$$\frac{d^2y}{dx^2} = x^2 + xy - y^2$$
, $y = \frac{1}{2}$ and $\frac{dy}{dx} = -1$ at $x = 0$,

Last updated: May 5, 2023

- (a) use the Taylor series method to obtain a series for y in ascending powers of x up to and including the term in x^3 .
- (b) Use your series to estimate the value of y at x = -0.1.

[1]

(c) Use the approximation

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$$

with a step length of 0.1 and your answer to part (b) to estimate the value of y when x = 0.1.

Total: 10

[3]

7. Referred to a fixed origin, the straight lines l_1, l_2 and l_3 have equations

$$l_1$$
: $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k} + s(2\mathbf{i} - 4\mathbf{j} + \mathbf{k}),$
 l_2 : $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + t(4\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}),$

$$l_3$$
: $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + u(2\mathbf{j} + \mathbf{k}).$

The acute angle between l_1 and l_2 is θ .

(a) Find the exact value of $sin(\theta)$.

[5]

The plane Π contains the lines l_1 and l_2 .

(b) Find an equation of Π , giving your answer in the form ax + by + cz + d = 0.

[4]

[4]

[4]

(c) Show that the line l_3 lies on the plane Π .

Total: 13

8. (a) A and B are non-singular square matrices. Prove that $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

.0001. 10

The transformations $S \colon \mathbb{R}^2 \mapsto \mathbb{R}^2$ and $T \colon \mathbb{R}^2 \mapsto \mathbb{R}^2$ are defined by

$$S \colon \mapsto \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y - x \\ 2x + y \end{pmatrix} \quad \text{and} \quad T \colon \mapsto \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 3x \\ x + y \end{pmatrix}.$$

(b) Show that S represents a linear transformation.

[7]

[6]

(c) Using your result in (a), or otherwise, find the matrix that represents the transformation $(ST)^{-1}$.

Last updated: May 5, 2023

Total: 17

