Solomon Practice Paper

Pure Mathematics 6C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	10	
4	11	
5	11	
6	14	
7	16	
Total:	75	

How I can achieve better:

•

•

•

1. Given that y satisfies the differential equation

$$\frac{dy}{dx} = e^x \cosh(2y + x), \quad y = 1 \quad \text{at} \quad x = 1,$$

- (a) use the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 y_0}{h}$ to obtain an estimate for y at x = 1.01, [3]
- (b) use the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 y_{-1}}{2h}$ to obtain an estimate for y at x = 0.99.

Total: 6

[3]

- 2. The points A, B and C have coordinates (2, 1, -1), (-2, 4, -2) and (a, -5, 1) respectively, relative to the origin O, where $a \neq 10$.
 - (a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

[4]

The area of triange ABC is $4\sqrt{10}$ square units.

(b) Find the possible values of the constant a.

Total: 7

[3]

3. (a) Given that $z = \cos(\theta) + \mathbf{i}\sin(\theta)$, show that

[2]

$$z^n + \frac{1}{z^n} = 2\cos(n\theta)$$

where n is a positive integer.

The equation $5z^4 - 11z^3 + 16z^2 - 11z + 5 = 0$ has no real roots.

(b) Use the result in part (a) to solve the equation, giving your answers in the form $a + \mathbf{i}b$ where $a, b \in \mathbb{R}$.

Total: 10

4. Given that

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix},$$

(a) prove by induction that

[6]

$$\mathbf{A}^{n} = \begin{pmatrix} 1 & n & \frac{1}{2}n(n+1) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

for all positive integers n.

(b) Find the inverse of \mathbf{A}^n .

[5]

Total: 11

5. Given that

$$f(x) = \arccos(x), \quad -1 \le x \le 1,$$

show that

(a)
$$f'(x) = \frac{-1}{(1-x^2)^{\frac{1}{2}}}$$
, [3]

(b)
$$(1-x^2)f''(x) - xf'(x) = 0.$$
 [3]

(c) Use Maclaurin's theorem to find the expansion of f(x) in ascending powers of x up to and including the term in x^3 .

Total: 11

[7]

[3]

6. The eigenvalues of the matrix

$$\mathbf{M} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

are λ_1, λ_2 and λ_3 .

- (a) Show that $\lambda_1 = 2$ is an eigenvalue of M and find the other two eigenvalues λ_2 and λ_3 .
- (b) Find an eigenvector corresponding to the eigenvalue 2. [4]

Given that $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ are eigenvectors of **M** corresponding to λ_2 and λ_3 respectively,

(c) write down a matrix \mathbf{P} such that

$$\mathbf{P}^{-1}\mathbf{MP} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}.$$

Total: 14

[7]

7. The complex number z = x + iy, where x and y are real, satisfies the equation

$$|z + 1 + 8\mathbf{i}| = 3|z + 1|.$$

The complex number z is represented by the point P in the Argand diagram.

- (a) Show that the locus of P is a circle and state the centre and radius of this circle.
- (b) Represent on the same Argand diagram the loci [4]

$$|z + 1 + 8\mathbf{i}| = 3|z + 1|$$
 and $|z| = \left|z - \frac{14}{5}\right|$

Last updated: May 5, 2023

(c) Find the complex numbers corresponding to the points of intersection of these loci, giving your answers in the form $a + \mathbf{i}b$ where a and b are real.

Total: 16

