Solomon Practice Paper

Pure Mathematics 2F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	7	
3	8	
4	9	
5	11	
6	11	
7	12	
8	12	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

1. (a) Find

[2]

Given that $f'(x) = 2x - 3e^x$ and that the curve y = f(x) meets the y-axis at the point (0, 6), (b) find f(x).

Total: 5

Total: 7

- 2. (a) Sketch on the same set of coordinate axes the graphs of y = x² + 1 and y = |2x 4|. [3]
 (b) Hence, or otherwise, solve the equation x² + 1 = |2x 4|. [4]
- 3. (a) Find the first three terms in the expansion of $(2+kx)^5$ in ascending powers of x, simplifying [3] each coefficient.

Given that the coefficient of x^2 in the expansion of $(1-x)(2+kx)^5$ is 60,

(b) find the two possible values of k.

Total: 8

[5]

[5]

[4]

4. (a) Given that

 $p = \log_2(x)$ and $q = \log_2(y)$,

find expressions in terms of p and q for

- i. $\log_2(x^2y)$, ii. $\log_2\left(\frac{\sqrt{y}}{x^3}\right)$.
- (b) Hence, or otherwise, solve the simultaneous equations

 $\log_2(x^2y) = 2$ and $\log_2\left(\frac{\sqrt{y}}{x^3}\right) = -11$

Total: 9

5. Figure shows part of the curve $y = 2\ln(x)$.

www.CasperYC.club

Last updated: May 5, 2023

(a) Write the equation of the curve in the form x = f(y).

The shaded region is enclosed by the curve, the positive coordinate axes and the line y = 2.

- (b) Use the trapezium rule with 4 intervals of equal width to estimate the area of the shaded [4] region correct to 3 significant figures.
- (c) Find the volume of the solid generated when the shaded region is rotated through 360° [5] about the *y*-axis. Give your answer in terms of e and π .

Total: 11

[2]

6.

$$f(x) \equiv \sqrt{3}\sin(x) + \cos(x)$$

- (a) Express f(x) in the form $R\sin(x+\alpha)$ where x is measured in degrees and $0 < \alpha < 90^{\circ}$. [5]
- (b) State the maximum value of $(\sqrt{3}\sin(x) + \cos(x))$ and the smallest positive value of x for [2] which f(x) takes this value.
- (c) Solve the equation $f(x) = \sqrt{2}$, for x in the interval $0 \le x \le 360^{\circ}$. [4]

Total: 11

7. The functions f and g are defined as follows

f: x	\mapsto	$x^2 - 6x,$	$x \in \mathbb{R},$
g: x	\mapsto	$e^x + 3$,	$x \in \mathbb{R}.$

- (a) Evaluate $g(2\ln(3))$.
- (b) Find and simplify an expression for fg(x). [3]
- (c) Prove that for all values of x, $fg(x) \equiv g(2x) 12$.
- (d) Solve the equation gf(x) = 4.

Total: 12

[3]

[2]

[4]

8. Figure shows part of the curve with equation y = f(x) where

www.CasperYC.club

Last updated: May 5, 2023

Given that the curve passes through the point $A\left(\frac{1}{4}, \frac{1}{2}\right)$,	
(a) show that $k = 4$,	

(b) find f'(x),
(c) prove that the normal to the curve at the point A passes through the origin.

[3]

