Solomon Practice Paper

Pure Mathematics 1F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	6	
4	9	
5	11	
6	12	
7	12	
8	14	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

www.CasperYC.club

5.

1. Solve for x in the interval $0 \le x \le 360^{\circ}$:

Pure Mathematics – Practice Paper 1F

$$\sqrt{3} - 2\cos(x + 45) = 0$$

2.

3.

(a) Find f'(x).

$$f(x) \equiv 3 + 21x + 9x^2 - x^3.$$

(b) Hence show that when $x = \sqrt{3}$, the value of $(1 - 5x)(x^3 + x)$ can be written in the form

(b) Find the set of values of
$$x$$
 for which $f(x)$ is decreasing.

(a) Expand $(1-5x)(x^3+x)$ in ascending powers of x.

 $a\sqrt{3} + b$ where a and b are integers to be found.

4. Figure shows the badge design for a new model of car.

The design consists of an arrowhead in a circle. O is the centre of the circle and A, B and C lie on the circumference of the circle. The arrowhead is symmetrical about the line through OB.

Given that the radius of the circle is 7.2 cm and $\angle AOC = 84^{\circ}$,

- (a) find the size of $\angle AOB$,
- (b) calculate the area of triangle AOB, correct to 2 decimal places,
- (c) calculate the area of the arrowhead as a percentage of the area of the circle.

Total: 9

[2]

[3]

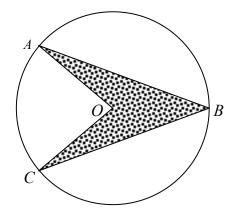
[4]

[3]

written as $b \rangle^2 \qquad b^2$ 1

(a) By completing the square show that
$$ax^2 + bx + c$$
 can be w

$$a\left(x+\overline{2a}\right) + c - \overline{4a}.$$


Last updated: May 5, 2023

Total: 6

Total: 6

Page 1 of 3

[5]

[4]

[2]

[4]

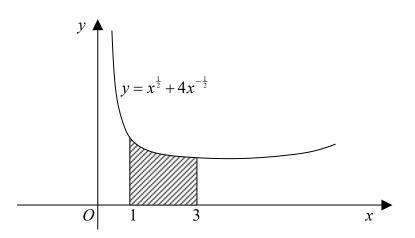
[2]

(b) Hence prove that the solutions of the equation $ax^2 + bx + c = 0$ are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

(c) Solve the equation

$$x(2x-3) = 1+x$$

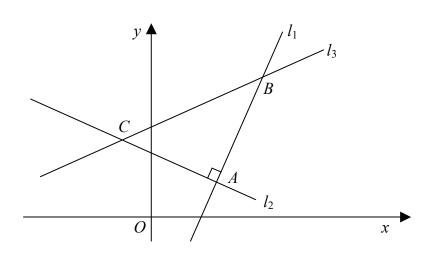

giving your answers correct to 3 significant figures.

Total: 11

[4]

[4]

6. Figure shows the part of the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$.


- (a) Find the coordinates of the minimum point of the curve.
 (b) Find the area of the shaded region enclosed by the curve, the x-axis and the ordinates x = 1
 - (b) I find the area of the shaded region cherosed by the curve, the x-axis and the ordinates x = 1 [5] and x = 3, giving your answer as an exact value.

Total: 12

- 7. The second and fifth terms of an arithmetic series are 213 and 171 respectively.
 - (a) Find the first term and the common difference of the series. [4]
 (b) Find and simplify an expression for the *n*th term of the series in terms of *n*. [2]
 (c) By forming an appropriate inequality, or otherwise, find how many terms of the series are positive. [3]
 (d) Hence find the maximum value of S_n, the sum of the first *n* terms of the series. [3]
 Total: 12
- 8. Figure shows the lines l_1, l_2 and l_3 .

www.CasperYC.club

Line l_1 passes through the points A(5,2) and B(7,8).

(a) Find an equation of the line l_1 .	[3	3]
--	----	----

Line l_2 is perpendicular to line l_1 and also passes through the point A.

(b) Find an equation of the line l_2 .

Line l_3 has equation x - 2y + 9 = 0 and intersects line l_1 at B and line l_2 at the point C.

- (c) Find the coordinates of the point C.
- (d) Prove that triangle ABC is isosceles.

Total: 14

[3]

[4]

[4]

