Solomon Practice Paper

Pure Mathematics 1B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	5	
3	8	
4	9	
5	12	
6	12	
7	12	
8	13	
Total:	75	

How I can achieve better:

- •
- •
- •

- 1. Find the set of values of y for which
- $y^2 + 5y > 24.$
- 2. Figure shows part of the curve $y = p \sin(qx)$, where x is measured in degrees.

The first maximum for x > 0 occurs at the point A(30, 2).

(a) Find the values of p and q. [2](b) State the period of the curve. [1] (c) Find the coordinates of the point B, the first minimum on the curve for x > 0. [2]

Total: 5

[3]

[3]

[2]

[4]

(a) Prove that 3.

 $a^2 + b^2 \ge 2ab$

for all real values of a and b.

(b) Prove that

$$x^2 \ge 4y(x-y)$$

for all real values of x and y.

(c) State the relationship between x and y for which

$$x^2 = 4y(x - y)$$

x

Total: 8

4.

$$\mathbf{f}(x) \equiv x^2 - 4\sqrt{3}x + 9.$$

- (a) Solve the equation f(x) = 0, giving your answers exactly in terms of surds. [5]
 - (b) Find the coordinates of the turning point of the curve y = f(x).

5. Figure shows the four lines l_1, l_2, l_3 and l_4 .

Line l_1	passes	through	the	points	A(3,8)	and	B(7, 10).	
Line l_2	passes	through	the	points	C(4, 3)	and	D(6, 4).	

(a) Find an equation of the line l_1 in the form $ax + by + c = 0$.	[3]
(b) Prove that the line l_2 is parallel to the line l_1 .	[2]

(b) Prove that the line l_2 is parallel to the line l_1 .

(c) Calculate the lengths AB and CD giving your answers in surd form.

Line l_3 passes through the points A and D.

Line l_4 passes through the points B and C.

Lines l_3 and l_4 intersect at the point E.

(d) By using your answer to part (c), or otherwise, show that the area of triangle ABE is four [4]times the area of triangle CDE.

Total: 12

[3]

6.	The first term	of an	arithmetic	series	is $2x$	and	the seventh	term	of the	series	is x .	

(a)	Find the common	difference of the series in	terms of x . [3]	3

Given that the tenth term of the series is 4,

(b) show that $x = 8$.	[3]
Given also that the sum of the first n terms of the series is 100,	

(c) find two possible values of n.

Total: 12

[6]

7. Figure shows the height h, in metres, of a roller coaster trolley, t seconds after the start of a ride.

The height changes according to the equation $h = 25 - 24t + 9t^2 - t^3$.

(a) Find the change in the trolley's height during the first second of its motion. [3]

The height of the trolley decreases until the point labelled A on the graph. It then increases until the point labelled B, before again decreasing.

- (b) Find the value of t at the point A.
- (c) How much height does the trolley gain between the points A and B? [4]

Total: 12

[5]

8. Figure shows part of the curve with equation $y = 3x^2 + px + q$ which passes through the points A(1, 12) and B(5, 12).

- (a) Find the values of p and q.
- (b) State the coordinates of the point C where the curve intersects the y axis.
- (c) Find the area of the shaded region bounded by the curve and the lines AB and BC.

 $\left[5\right]$

[1]

[7]