Solomon Practice Paper

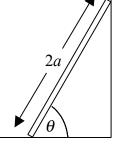
Mechanics 2C

	Question	Points	Score
Time allowed: 90 mintues	1	7	
	2	8	
	3	9	
	4	9	
Centre:	5	13	
Name:	6	14	
Teacher:	7	15	
	Total:	75	

1. A particle P of mass 2kg is subjected to a force F such that its displacement, r metres, from a fixed origin, O, at time t seconds is given by

$$r = (3t^2 - 4)\mathbf{i} + (3 - 4t^2)\mathbf{j}.$$

- (a) Show that the acceleration of P is constant.
- (b) Find the magnitude of F.
- 2. A pump raises water from a well 12 metres below the ground and ejects the water through a pipe of diameter 10 cm at a speed of 6 ms^{-1} .


Given that the mass of 1 m^3 of water is 1000kg,

- (a) find, in terms of π , the mass of water discharged by the pipe every second, [4]
- (b) find in kJ, correct to 3 significant figures, the total mechanical energy gained by the water [4]per second.
- 3. A particle moves in a straight horizontal line such that its velocity, $v \text{ ms}^{-1}$, at time t seconds is given by $v = 2t^2 - 9t + 4$. Initially, the particle has displacement 9 m from a fixed point O on the line.
- (a) Find the initial velocity of the particle. [1] (b) Show that the particle is at rest when t = 4 and find the other value of t when it is at rest. [3] (c) Find the displacement of the particle from O when t = 6. [5]Total: 9
- 4. Figure shows a uniform ladder of mass m and length 2a resting against a rough vertical wall with [9] its lower end on rough horizontal ground. The coefficient of friction between the ladder and the wall is $\frac{1}{2}$ and the coefficient of friction between the ladder and the ground is $\frac{1}{3}$.

Given that the ladder is in limiting equilibrium when it is inclined at an angle θ to the horizontal, show that $\tan \theta = \frac{5}{4}$.

Last updated: November 20, 2020

[4]

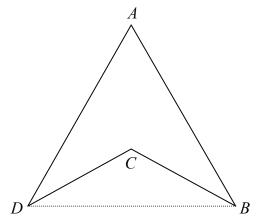
Total: 7

Total: 8

5. A firework company is testing its new brand of firework, the Sputnik Special. One of the company's employees lights a Sputnik Special on a large area of horizontal ground and it takes off at a small angle to the vertical. After a flight lasting 8 seconds it lands at a distance of 24 metres from the point where it was launched.

The employee models the firework as a particle and ignores air resistance and any loss of mass which the Sputnik Special experiences.

Using this model, find for this flight of the Sputnik Special,


- (a) the horizontal and vertical components of the initial velocity,
 (b) the initial speed, correct to 3 significant figures,
- (c) the maximum height attained.
- (d) Comment on the suitability of the modelling assumptions made by the employee.

Total: 13

[3]

[3]

- 6. Three uniform spheres A, B and C of equal radius have masses 3m, 2m and 2m respectively. Initially, the spheres are at rest on a smooth horizontal table with their centres in a straight line and with B between A and C. Sphere A is projected directly towards B with speed u. Given that the coefficient of restitution between A and B is ²/₃,
 (a) show that the speeds of A and B after the collision are ¹/₃u and u respectively. [6] The coefficient of restitution between B and C is e. Given that A and B collide again,
 (b) show that e > ¹/₃. [8]
 - Total: 14
- 7. Figure shows a uniform lamina ABCD formed by removing an isosceles triangle BCD from an equilateral triangle ABD of side 2d.

The point C is the centroid of triangle ABD.(a) Find the area of triangle BCD in terms of d.

Last updated: November 20, 2020

(b) Show that the distance of the centre of mass of the lamina from BD is $\frac{4}{9}\sqrt{3}d$.	[8]
The lamina is freely suspended from the point B and hangs at rest.	
(c) Find in degrees, correct to 1 decimal place, the acute angle that the side AB makes with the vertical.	[4]
Tota	al: 15