Solomon Practice Paper

Mechanics 2B

Time allowed: 90 mintues

Centre:

Name:
Teacher:

Question	Points	Score
1	7	
2	7	
3	10	
4	10	
5	10	
6	15	
7	16	
Total:	75	

1. A bullet of mass 25 g is fired directly at a fixed wooden block of thickness 4 cm and passes through it. When the bullet hits the block, it is travelling horizontally at $200 \mathrm{~ms}^{-1}$. The block exerts a constant resistive force of 8000 N on the bullet.
(a) Find the work done by the block on the bullet.

By using the Work-Energy principle,
(b) show that the bullet emerges from the block with speed $120 \mathrm{~ms}^{-1}$.
2. A car is travelling along a straight horizontal road against resistances to motion which are constant and total 2000 N . When the engine of the car is working at a rate of H kilowatts, the maximum speed of the car is $30 \mathrm{~ms}^{-1}$.
(a) Find the value of H.

The car driver wishes to overtake another vehicle so she increases the rate of working of the engine by 20% and this results in an initial acceleration of $0.32 \mathrm{~ms}^{-2}$.

Assuming that the resistances to motion remain constant,
(b) find the mass of the car.
3. Figure shows a uniform triangular lamina $A B C$ placed with edge $B C$ along the line of greatest slope of a plane inclined at an angle θ to the horizontal.

The lengths $A C$ and $B C$ are 15 cm and 9 cm respectively and $\angle A B C$ is a right angle.
(a) Find the distance of the centre of mass of the lamina from
i. $A B$,
ii. $B C$.

Assuming that the plane is rough enough to prevent the lamina from slipping,
(b) find in degrees, correct to 1 decimal place, the maximum value of θ for which the lamina remains in equilibrium.
4. The velocity $v \mathrm{~ms}^{-1}$ of a particle P at time t seconds is given by $v=3 t \mathbf{i}-t^{2} \mathbf{j}$.
(a) Find the magnitude of the acceleration of P when $t=2$.

When $t=0$, the displacement of P from a fixed origin O is $(6 \mathbf{i}+12 \mathbf{j}) \mathrm{ms}^{-1}$, where \mathbf{i} and \mathbf{j} are perpendicular horizontal unit vectors.
(b) Show that the displacement of P from O when $t=6$ is given by $k(\mathbf{i}-\mathbf{j}) m$, where k is an integer which you should find.
5. A uniform $\operatorname{rod} A B$ of length $2 a$ and mass 8 kg is smoothly hinged to a vertical wall at A.

The rod is held in equilibrium inclined at an angle of 20° to the horizontal by a force of magnitude F newtons acting horizontally at B which is below the level of A as shown in Figure.
(a) Find, correct to 3 significant figures, the value of F.
(b) Show that the magnitude of the reaction at the hinge is 133 N , correct to 3 significant figures, and find to the nearest degree the acute angle which the reaction makes with the vertical.

Total: 10
6. A particle P is projected from a point A on horizontal ground with speed u at an angle of elevation α and moves freely under gravity.
P hits the ground at the point B.
(a) Show that $A B=g u 2 \sin (2 \alpha)$.

An archer fires an arrow with an initial speed of $45 \mathrm{~ms}^{-1}$ at a target which is level with the point of projection and at a distance of 80 m .

Given that the arrow hits the target,
(b) find in degrees, correct to 1 decimal place, the two possible angles of projection.
(c) Write down, with a reason, which of the two possible angles of projection would give the shortest time of flight.
(d) Show that the minimum time of flight is 1.8 seconds, correct to 1 decimal place.

7．A smooth sphere A of mass $4 m$ is moving on a smooth horizontal plane with speed u ．It collides directly with a stationary smooth sphere B of mass $5 m$ and with the same radius as A ．

The coefficient of restitution between A and B is $\frac{1}{2}$ ．
（a）Show that after the collision the speed of B is 4 times greater than the speed of A ．
Sphere B subsequently hits a smooth vertical wall at right angles．After rebounding from the wall，B collides with A again and as a result of this collision，B comes to rest．

Given that the coefficient of restitution between B and the wall is e，
（b）find e．

