Solomon Practice Paper

Mechanics 1J

	Question	Points	Score
Time allowed: 90 mintues	1	8	
	2	8	
	3	10	
	4	10	
Centre:	5	11	
Name:	6	14	
Teacher:	7	14	
	Total:	75	

1. At time t = 0, a particle of mass 2kg has velocity $(8\mathbf{i} + \lambda \mathbf{j}) \text{ ms}^{-1}$ where \mathbf{i} and \mathbf{j} are horizontal perpendicular unit vectors and $\lambda > 0$.

Given that the speed of the particle at time t = 0 is 17 ms⁻¹,

(a) find the value of λ .

The particle experiences a constant retarding force F so that when t = 5, it has velocity $(3\mathbf{i} + 5\mathbf{j})$ ms⁻¹.

(b) Show that F can be written in the form $\mu(\mathbf{i} + 2\mathbf{j})N$ where μ is a constant which you should [5] find.

2. A monk uses a small brush to clean the stone floor of a monastery by pushing the brush with a force of P Newtons at an angle of 60° to the vertical. He moves the brush at a constant speed. The mass of the brush is 0.5kg and the coefficient of friction between the brush and the floor is $\frac{1}{\sqrt{3}}$. The brush is modelled as a particle and air resistance is ignored.

(a) Show that
$$P = \frac{g}{2}$$
 Newtons. [7]

(b) Explain why it is reasonable to ignore air resistance in this situation.

[1]

[2]

Total: 8

[3]

3. A small van of mass 1500kg is used to tow a car of mass 750kg by means of a rope of length 9m joined to both vehicles. The van sets off with the rope slack and reaches a speed of 2 ms⁻¹ just before the rope becomes taut and jerks the car into motion. Immediately after the rope becomes taut, the van and car travel with common speed V ms⁻¹.

(a) Show that
$$V = \frac{4}{3}$$
. [3]

(b) Calculate the magnitude of the impulse on the car when the rope tightens.

The van and car eventually reach a steady speed of 18ms^{-1} with the rope taut when a child runs out into the road, 30m in front of the van. The van driver brakes sharply and decelerates uniformly to rest in a distance of 27m.

It takes the driver of the car 1 second to react to the van starting to brake. He then brakes and the car decelerates uniformly at $f \text{ ms}^{-2}$, coming to rest before colliding with the van.

(c) Find the set of possible values of f.

Total: 10

[5]

4. Figure shows a weight A of mass 6kg connected by a light, inextensible string which passes over a smooth, fixed pulley to a box B of mass 5kg.

Total: 8

There is an object C of mass 3kg resting on the horizontal floor of box B.

The system is released from rest. Find, giving your answers in terms of g,

- (a) the acceleration of the system,
- (b) the force on the pulley.

(c) Show that the reaction between C and the floor of B is $\frac{18}{7}g$ newtons.

Total: 10

[4]

[3]

[3]

5. Two flies P and Q, are crawling vertically up a wall. At time t = 0, the flies are at the same height above the ground, with P crawling at a steady speed of 4cms⁻¹.

Q starts from rest at time t = 0 and accelerates uniformly to a speed of 6cms⁻¹ in 6 seconds. Fly Q then maintains this speed.

- (a) Find the value of t when the two flies are moving at the same speed.
- (b) Sketch on the same diagram, speed-time graphs to illustrate the motion of the two flies.

Given that the distance of the two flies from the top of the wall at time t = 0 is x cm and that Q reaches the top of the wall first,

(c) show that
$$x > 36$$
.

[5]

[3]

[3]

Total: 11

6. Figure shows a uniform plank AB of length 8 m and mass 50kg suspended horizontally by two light vertical inextensible strings attached at either end of the plank.

The maximum tension that either string can support is 40gN.

A rock of mass Mkg is placed on the plank at A and rolled along the plank to B without either string breaking.

www.CasperYC.club

Last updated: November 20, 2020

(a) Explain, with the aid of a sketch-graph, how the tension in the string at A varies with x , the distance of the rock from A .	[3]
(b) Show that $M \leq 15$.	[5]
The first rock is removed and a second rock of mass 20kg is placed on the plank.	
(c) Find the fraction of the plank on which the rock can be placed without one of the strings breaking.	[6]
Tc	otal: 14
7. At 6 a.m. a cargo ship has position vector $(7\mathbf{i} + 56\mathbf{j})$ km relative to a fixed origin O on the coast and moves with constant velocity $(9\mathbf{i} - 6\mathbf{j})$ kmh ⁻¹ .	
A ferry sails from O at 6 a.m. and moves with constant velocity $(12\mathbf{i} + 18\mathbf{j})$ kmh ⁻¹ . The unit vectors \mathbf{i} and \mathbf{j} are directed due east and due north respectively.	
(a) Show that the position vector of the cargo ship t hours after 6 a.m. is given by $[(7+9t)\mathbf{i} + (56-6t)\mathbf{j}]$ km, and find the position vector of the ferry in terms of t.	[3]
(b) Show that if both vessels maintain their course and speed, they will collide and find the time and position vector at which this occurs.	[6]
At 8 a.m. the captain of the ferry realises that a collision is imminent and changes course so that the ferry now has velocity $(21\mathbf{i} + 6\mathbf{j}) \text{ kmh}^{-1}$.	
(c) Find the distance between the two ships at the time when they would have collided.	[5]
Tc	otal: 14

www.CasperYC.club Last updated: November 20, 2020