Solomon Practice Paper

Mechanics 3F

Centre:	www.	Casper'	YC	club.
---------	------	---------	----	-------

Name:

Teacher:

How 1	[can	achieve	better:

- •
- .
- •

(cc)	(\mathbf{i})	\$	
	BY	NC	ND

July 14, 2025

Question	Points	Score
1	8	
2	8	
3	12	
4	12	
5	16	
6	19	
Total:	75	

- 1. A particle P of mass 1.5kg moves from rest at the origin such that at time t seconds it is subject to a single force of magnitude (4t + 3)N in the direction of the positive x-axis.
 - (a) Find the magnitude of the impulse exerted by the force during the interval $1 \le t \le 4$. [3]

Given that at time T seconds, P has a speed of 22 ms^{-1} ,

(b) find the value of T correct to 3 significant figures.

[5]

Total: 8

2. A particle P of mass 0.5kg is at rest at the highest point A of a smooth sphere, centre O, of radius 1.25 m which is fixed to a horizontal surface.

When P is slightly disturbed it slides along the surface of the sphere. Whilst P is in contact with the sphere it has speed $v \text{ ms}^{-1}$ when $\angle AOP = \theta$ as shown in Figure.

(a) Show that
$$v^2 = 24.5(1 - \cos\theta)$$
. [3]

(b) Find the value of $\cos \theta$ when P leaves the surface of the sphere.

Total: 8

[5]

3. A car starts from rest at the point O and moves along a straight line. The car accelerates to a maximum velocity, $V \text{ ms}^{-1}$, before decelerating and coming to rest again at the point A.

The acceleration of the car during this journey, $a \text{ ms}^{-2}$, is modelled by the formula

$$a = \frac{500 - kx}{150},$$

where x is the distance in metres of the car from O.

Using this model and given that the car is travelling at 16 ms⁻¹ when it is 40 m from O,

- (a) find k,
- (b) show that V = 41, correct to 2 significant figures,
- (c) find the distance OA.

Total: 12

[6]

[3]

[3]

4. A particle P of mass 2kg is attached to one end of a light elastic string of natural length 1.5m and modulus of elasticity λ .

The other end of the string is fixed to a point A on a rough plane inclined at an angle of 30° to the horizontal as shown in Figure. The coefficient of friction between P and the plane is $\frac{1}{6}\sqrt{3}$.

P is held at rest at A and then released. It first comes to instantaneous rest at the point B, 2.2m from A. For the motion of P from A to B,

- (a) show that the work done against friction is 10.78J, [5]
- (b) find the change in the gravitational potential energy of P.

By using the work-energy principle, or otherwise,

(c) find λ .

[5]

[2]

Total: 12

5. A flask is modelled as a uniform solid formed by removing a cylinder of radius r and height h from a cylinder of radius $\frac{4}{3}r$ and height $\frac{3}{2}h$ with the same axis of symmetry and a common plane as shown in Figure.

(a) Show that the centre of mass of the flask is a distance of $\frac{9}{10}h$ from the open end of the flask. [7]

The flask is made from a material of density ρ and is filled to the level of the open plane face with a liquid of density $k\rho$. Given that the centre of mass of the flask and liquid together is a distance of $\frac{15}{22}h$ from the open end of the flask,

- (b) find the value of k.
- (c) Explain why it may be advantageous to make the base of the flask from a more dense material.

Total: 16

[7]

[2]

6. A particle P of mass 2.5kg is moving with simple harmonic motion in a straight line between two points A and B on a smooth horizontal table. When P is 3m from O, the centre of the oscillations, its speed is $6ms^{-1}$. When P is 2.25m from O, its speed is $8 ms^{-1}$.

(a) Show that $AB = 7.5$ m.	[8]
(b) Find the period of the motion.	[4]
(c) Find the kinetic energy of P when it is 2.7m from A .	[3]

(d) Show that the time taken by P to travel directly from A to the midpoint of OB is $\frac{\pi}{4}$.

Total: 19

[4]

