Solomon Practice Paper

Mechanics 3A

Time allowed:	90	minutes
---------------	----	---------

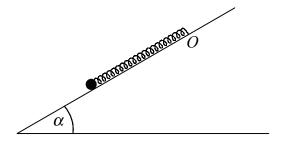
Centre:	www.CasperYC.clul	b
---------	-------------------	---

Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	10	
4	11	
5	13	
6	13	
7	14	
Total:	75	

How I can achieve better:


- •
- .
- _

July 14, 2025

1. A particle of mass 0.6kg is attached to one end of a light elastic spring of natural length 1m and modulus of elasticity 30N. The other end of the spring is fixed to a point O which lies on a smooth plane inclined at an angle α to the horizontal where $\tan \alpha = \frac{3}{4}$ as shown in Figure.

The particle is held at rest on the slope at a point 1.2m from O down the line of greatest slope of the plane.

- (a) Find the tension in the spring.
- (b) Find the initial acceleration of the particle.

Total: 7

[2]

[5]

2. A particle P of mass 0.5kg moves along the positive x-axis under the action of a single force directed away from the origin O. When P is x metres from O, the magnitude of the force is $3x^{\frac{1}{2}}N$ and P has a speed of $v \text{ ms}^{-1}$.

Given that when x = 1, P is moving away from O with speed 2 ms⁻¹,

- (a) find an expression for v^2 in terms of x,
- (b) show that when x = 4, P has a speed of 7.7ms⁻¹, correct to 1 decimal place.

Total: 7

[5]

[2]

3. A particle is performing simple harmonic motion along a straight line between the points A and B where $AB = 8$ m. The period of the motion is 12 seconds.	
(a) Find the maximum speed of the particle in terms of π .	[4]
The points P and Q are on the line AB at distances of 3m and 6m respectively from A .	

(b) Find, correct to 3 significant figures, the time it takes for the particle to travel directly from [6] P to Q.

Total: 10

4. Whilst in free-fall a parachutist falls vertically such that his velocity, $v \text{ ms}^{-1}$, when he is x metres below his initial position is given by

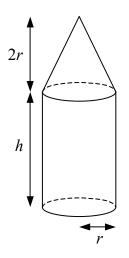
$$v^2 = kg\left(1 - \mathrm{e}^{-\frac{2x}{k}}\right),\,$$

where k is a constant.

Given that he experiences an acceleration of $f \text{ ms}^{-2}$,

(a) show that $f = g e^{-\frac{2x}{k}}$. [4]

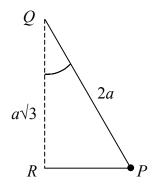
After falling a large distance, his velocity is constant at 49 ms^{-1} .


- (b) Find the value of k.
- (c) Hence, express f in the form $(\lambda \mu v^2)$ where λ and μ are constants which you should find. [4]

Total: 11

[3]

5. A firework is modelled as a uniform solid formed by joining the plane surface of a right circular cone of height 2r and base radius r, to one of the plane surfaces of a cylinder of height h and base radius r as shown in Figure.


Using this model,

(a) show that the distance of the centre of mass of the firework from its plane base is [9]
The firework is to be launched from rough ground inclined at an angle α to the horizontal. Given that the firework does not slip or topple and that h = 4r,
(b) Find, correct to the nearest degree, the maximum value of α. [4]

Total: 13

6. The two ends of a light inextensible string of length 3a are attached to fixed points Q and R which are a distance of $a\sqrt{3}$ apart with R vertically below Q. A particle P of mass m is attached to the string at a distance of 2a from Q.

P is given a horizontal speed, u, such that it moves in a horizontal circle with both sections of the string taut as shown in Figure.

(a) Show that $\angle PRQ$ is a right angle.	[2]
(b) Find $\angle PQR$ in degrees.	[1]
(c) Find, in terms of a, g, m and u , the tension in the section of string	[7]
i. <i>PQ</i> ,	
ii. <i>PR</i> .	
(d) Show that $u^2 \ge \frac{ga}{\sqrt{3}}$.	[3]
	Total: 13

- 7. A particle of mass 2kg is attached to one end of a light elastic string of natural length 1m and modulus of elasticity 50N. The other end of the string is attached to a fixed point O on a rough horizontal plane and the coefficient of friction between the particle and the plane is $\frac{10}{49}$. The particle is projected from O along the plane with an initial speed of 5 ms⁻¹.
 - (a) Show that the greatest distance from O which the particle reaches is 1.84 m. [9]
 - (b) Find, correct to 2 significant figures, the speed at which the particle returns to O. [5]

Total: 14

