Solomon Practice Paper

Mechanics 1D

90 n	ninutes
(90 n

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	7	
4	10	
5	10	
6	11	
7	12	
8	14	
Total:	75	

How I can achieve better:

- •

Last updated: July 14, 2025

1. A particle, P, of mass 5kg moves with speed 3 ms⁻¹ along a smooth horizontal track. It strikes a particle Q of mass 2kg which is at rest on the track. Immediately after the collision, P and Qmove in the same direction with speeds v and 2v ms⁻¹ respectively.

(a) Calculate the value of <i>i</i>

(b) Calculate the magnitude of the impulse received by Q on impact.

[2]

[3]

[4]

Total: 6

- 2. A particle P moves with a constant velocity $(3\mathbf{i} + 2\mathbf{j}) \text{ ms}^{-1}$ with respect to a fixed origin O. It passes through the point A whose position vector is $(2\mathbf{i} + 11\mathbf{j})\mathbf{m}$ at t = 0.
 - (a) Find the angle in degrees that the velocity vector of P makes with the vector **i**. [2]
 - (b) Calculate the distance of P from O when t = 2.

www.CasperYC.club

- 3. A car of mass 1250kg is moving at constant speed up a hill, inclined at an angle α to the horizontal, where $\sin(\alpha) = \frac{1}{10}$. The driving force produced by the engine is 1800N.
 - (a) Calculate the resistance to motion which the car experiences.

At the top of the hill, the road becomes horizontal.

(b) Find the initial acceleration of the car.

[3]

[4]

- 4. A non-uniform plank AB of mass 20kg and length 6m is supported at both ends so that it is horizontal. When a woman of mass 60kg stands on the plank at a distance of 2m from B, the magnitude of the reaction at A is 35gN.
 - (a) Suggest a suitable model for
 - i. the plank,
 - ii. the woman.

(b)	Calculate the magnitude of the reaction	1 at B	giving your answer	in	terms of g .	
-----	---	----------	--------------------	----	----------------	--

- (c) Explain briefly, in the context of the problem, the term 'non-uniform'.
- (d) Find the distance of the centre of mass of the plank from A.

Total: 10

[2]

[2]

[2]

[4]

5. The points A, O and B lie on a straight horizontal track as shown in Figure. A is 20m from O [10] and B is on the other side of O at a distance xm from O.

At time t = 0, a particle P starts from rest at O and moves towards B with uniform acceleration of 3 ms⁻². At the same instant, another particle Q, which is at the point A, is moving with a velocity of 3 ms⁻¹ in the direction of O with uniform acceleration of 4 ms⁻² in the same direction. Given that the Q collides with P at B, find the value of x.

www.CasperYC.club

Last updated: July 14, 2025

- 6. A sledge of mass 4kg rests in limiting equilibrium on a rough slope inclined at an angle 10° to the horizontal. By modelling the sledge as a particle,
 - (a) show that the coefficient of friction, μ , between the sledge and the ground is 0.176 correct [6] to 3 significant figures.

The sledge is placed on a steeper part of the slope which is inclined at an angle 30° to the horizontal. The value of μ remains unchanged.

(b) Find the minimum extra force required along the line of greatest slope to prevent the sledge [5] from slipping down the hill.

7. Whilst looking over the edge of a vertical cliff, 122.5 metres in height, Jim dislodges a stone. The stone falls freely from rest towards the sea below.

Ignoring the effect of air resistance,

- (a) calculate the time it would take for the stone to reach the sea,
- (b) find the speed with which the stone would hit the water.

Two seconds after the stone begins to fall, Jim throws a tennis ball downwards at the stone.

The tennis ball's initial speed is $u \text{ ms}^{-1}$ and it hits the stone before they both reach the water.

(c)) Find	the	minimum	value	of \imath	l.
-----	--------	-----	---------	-------	-------------	----

(d) If you had taken air resistance into account in your calculations, what effect would this have [2] had on your answer to part (c)? Explain your answer.

Total: 12

[3]

[2]

[5]

8. Figure shows two particles P and Q, of mass 3kg and 2kg respectively, attached to the ends of a light, inextensible string which passes over a smooth, fixed pulley.

The system is released from rest with P and Q at the same level 1.5 metres above the ground and 2 metres below the pulley.

(a) Show that the initial acceleration of the system is $5g \text{ ms}^{-2}$.	[4]
(b) Find the tension in the string.	[2]
(c) Find the speed with which P hits the ground.	[3]
When P hits the ground, it does not rebound.	
(d) What is the closest that Q gets to the pulley.	[5]

