Solomon Practice Paper

Mechanics 3F

Time allowed: 90 mintues

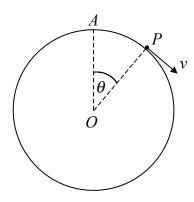
Centre:

Name:

Teacher:

Question	Points	Score
1	8	
2	8	
3	12	
4	12	
5	16	
6	19	
Total:	75	

How I can achieve better:


- •

1.	A particle P of mass 1.5kg moves from rest at the origin such that at time t seconds it is subject to a single force of magnitude $(4t + 3)N$ in the direction of the positive x -axis.	t
	(a) Find the magnitude of the impulse exerted by the force during the interval $1 \le t \le 4$.	[3]
	Given that at time T seconds, P has a speed of 22 ms ⁻¹ ,	
	(b) find the value of T correct to 3 significant figures.	[5]
		Total: 8
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Last updated: November 20, 2020

2. A particle P of mass 0.5kg is at rest at the highest point A of a smooth sphere, centre O, of radius 1.25 m which is fixed to a horizontal surface.

When P is slightly disturbed it slides along the surface of the sphere. Whilst P is in contact with the sphere it has speed v ms⁻¹ when $\angle AOP = \theta$ as shown in Figure.

(a) Show that $v^2 = 24.5(1 - \cos \theta)$.

[3]

[5]

(b) Find the value of $\cos\theta$ when P leaves the surface of the sphere.

Total: 8

[6]

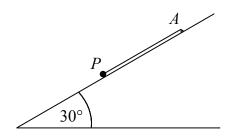
[3]

[3]

3. A car starts from rest at the point O and moves along a straight line. The car accelerates to a maximum velocity, $V \text{ ms}^{-1}$, before decelerating and coming to rest again at the point A.

The acceleration of the car during this journey, $a \text{ ms}^{-2}$, is modelled by the formula

$$a = \frac{500 - kx}{150},$$


where x is the distance in metres of the car from O.

Using this model and given that the car is travelling at 16 ms^{-1} when it is 40 m from O,

- (a) find k,
- (b) show that V = 41, correct to 2 significant figures,
- (c) find the distance OA. Total: 12

4. A particle P of mass 2kg is attached to one end of a light elastic string of natural length 1.5m and modulus of elasticity λ .

The other end of the string is fixed to a point A on a rough plane inclined at an angle of 30° to the horizontal as shown in Figure. The coefficient of friction between P and the plane is $\frac{1}{6}\sqrt{3}$.

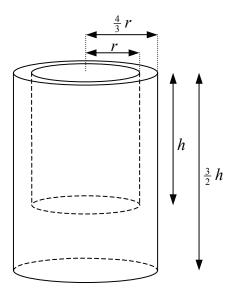
P is held at rest at A and then released. It first comes to instantaneous rest at the point B, 2.2m from A. For the motion of P from A to B,

(a) show that the work done against friction is 10.78J,

[5]

[5]

(b) find the change in the gravitational potential energy of P.


[2]

By using the work-energy principle, or otherwise,

(c) find λ .

Total: 12

5. A flask is modelled as a uniform solid formed by removing a cylinder of radius r and height h from a cylinder of radius $\frac{4}{3}r$ and height $\frac{3}{2}h$ with the same axis of symmetry and a common plane as shown in Figure.

(a) Show that the centre of mass of the flask is a distance of $\frac{9}{10}h$ from the open end of the flask. The flask is made from a material of density ρ and is filled to the level of the open plane face with a liquid of density $k\rho$. Given that the centre of mass of the flask and liquid together is a distance of $\frac{15}{22}h$ from the open end of the flask,

(b) find the value of k. [7]

(c) Explain why it may be advantageous to make the base of the flask from a more dense material.

Total: 16

[7]

[2]

two points A and B on a smooth horizontal table. When P is 3m from O , the centre oscillations, its speed is 6ms^{-1} . When P is 2.25m from O , its speed is 8 ms^{-1} .	of the
(a) Show that $AB = 7.5$ m.	[8]
(b) Find the period of the motion.	[4]
(c) Find the kinetic energy of P when it is 2.7m from A .	[3]
(d) Show that the time taken by P to travel directly from A to the midpoint of OB is $\frac{\pi}{4}$	[4]
	Total: 19

