Solomon Practice Paper

Mechanics 3C

Time allowed: 90 mintues

Centre:

Name:

Teacher:

Question	Points	Score
- Question	1 011100	50010
1	7	
2	7	
3	9	
4	11	
5	12	
6	14	
7	15	
Total:	75	

How I can achieve better:

- •
- •

[7]

1.	A light elastic string has natural length a and modulus of elasticity $4mg$. One end of the string is attached to a fixed point A and a particle of mass m is attached to the other end.		
	The particle is released from rest at A and falls vertically until it comes to rest instantaneously at the point B .		
	Find the distance AB in terms of a .		

Last updated: November 20, 2020

2. A particle P of mass 0.25kg is moving on a horizontal plane.

At time t seconds the velocity, v ms⁻¹, of P relative to a fixed origin O is given by

$$v = \ln(t+1)\mathbf{i} - e^{-2t}\mathbf{j}, \qquad t \le 0,$$

where ${\bf i}$ and ${\bf j}$ are perpendicular unit vectors in the horizontal plane.

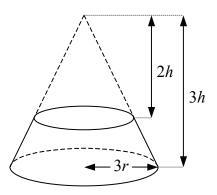
(a) Find the acceleration of P in terms of t.

[3]

[4]

(b) Find, correct to 3 significant figures, the magnitude of the resultant force acting on P when t=1.

Total: 7



3.	A coin of mass 5 grams is placed on a vinyl disc rotating on a record player. The distance between the centre of the coin and the centre of the disc is 0.1m and the coefficient of friction between the coin and the disc is μ . The disc rotates at 45 revolutions per minute around a vertical axis at its centre and the coin moves with it and does not slide.	
	By modelling the coin as a particle and giving your answers correct to an appropriate degree of accuracy, find	
	(a) the speed of the coin,	[2]
	(b) the horizontal and vertical components of the force exerted on the coin by the disc.	[4]
	Given that the coin is on the point of moving,	
	(c) show that, correct to 2 significant figures, $\mu = 0.23$.	[3]
		Total: 9

face. Given that h = 2r,

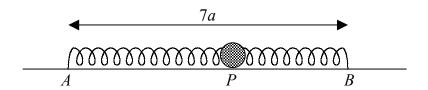
4. A stand used to reach high shelves in a storeroom is in the shape of a frustum of a cone. It is modelled as a uniform solid formed by removing a right circular cone of height 2h from a similar cone of height 3h and base radius 3r as shown in Figure.

- (a) Show that the centre of mass of the stand is a distance of $\frac{33}{76}h$ from its larger plane face. [7] The stand is stored hanging in equilibrium from a point on the circumference of the larger plane
- (b) find, correct to the nearest degree, the acute angle which the plane faces of the stand make with the vertical.

Total: 11

[4]

5. A particle of mass 0.8kg is moving along the positive x-axis at a speed of 5 ms⁻¹ away from the origin O. When the particle is 2 metres from O it becomes subject to a single force directed towards O. The magnitude of the force is $\frac{k}{x^2}$ N when the particle is x metres from O. Given that when the particle is 4m from O its speed has been reduced to 3 ms⁻¹,


(a) show that $k = \frac{128}{5}$, [8]

(b) find the distance of the particle from O when it comes to instantaneous rest. [4]

Total: 12

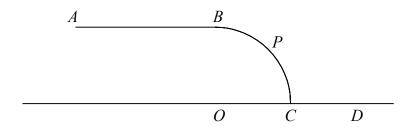
Last updated: November 20, 2020

6. Figure shows a particle P of mass m which lies on a smooth horizontal table.

It is attached to a point A on the table by a light elastic spring of natural length 3a and modulus of elasticity λ , and to a point B on the table by a light elastic spring of natural length 2a and modulus of elasticity 2λ . The distance between the points A and B is 7a.

(a) Show that in equilibrium $AP = \frac{9}{2}a$.	
--	--

[5]


The particle is released from rest at a point Q where Q lies on the line AB and AQ = 5a.

(b) Prove that the subsequent motion of the particle is simple harmonic with a period of $\pi \sqrt{\frac{3ma}{\lambda}}$. [9]

Total: 14

7. Figure shows a vertical cross-section through part of a ski slope consisting of a horizontal section AB followed by a downhill section BC.

The point O is on the same horizontal level as C and BC is a circular arc of radius 30 m and centre O, such that $\angle BOC = 90^{\circ}$.

A skier of mass 60 kg is skiing at 12ms^{-1} along AB.

(a) Assuming that friction and air resistance may be neglected, find the magnitude of the loss in reaction between the skier and the surface at B.

[4]

The skier subsequently leaves the slope at the point P.

(b) Find, correct to 3 significant figures, the speed at which the skier leaves the slope.

[8] [3]

(c) Find, correct to 3 significant figures, the speed of the skier immediately before hitting the ground again at the point D which is on the same horizontal level as C.

Total: 15

