Solomon Practice Paper

Mechanics 3B

Time allowed: 90 mintues

Centre:

Name:
Teacher:

Question	Points	Score
1	7	
2	8	
3	8	
4	12	
5	13	
6	13	
7	14	
Total:	75	

How I can achieve better:

1. A student is attempting to model the expansion of an airbag in a car following a collision.

The student considers the displacement from the steering column, s metres, of a point P on the airbag t seconds after a collision and uses the formula

$$
s=\mathrm{e}^{3 t}-1, \quad 0 \leq t \leq 0.1
$$

Using this model,
(a) find, correct to the nearest centimetre, the maximum displacement of P,
(b) find the initial velocity of P,
(c) find the acceleration of P in terms of t.
(d) Explain why this model is unlikely to be realistic.
\qquad
2. A particle P is attached to one end of a light elastic string of modulus of elasticity 80 N . The other end of the string is attached to a fixed point A.

When a horizontal force of magnitude 20 N is applied to P, it rests in equilibrium with the string making an angle of 30° with the vertical and $A P=1.2 \mathrm{~m}$ as shown in Figure.
(a) Find the tension in the string.
(b) Find the elastic potential energy stored in the string.
\qquad
3. A particle of mass m is suspended at a point A vertically below a fixed point O by a light inextensible string of length a as shown in Figure.

The particle is given a horizontal velocity u and subsequently moves along a circular arc until it reaches the point B where the string becomes slack.

Given that the point B is at a height $\frac{1}{2} a$ above the level of O,
(a) show that $\angle B O A=120^{\circ}$,
(b) show that $u^{2}=\frac{7}{2} g a$.
\qquad
4. On a particular day, high tide at the entrance to a harbour occurs at 11a.m. and the water depth is 14 m . Low tide occurs $6 \frac{1}{4}$ hours later at which time the water depth is 6 m .

In a model of the situation, the water level is assumed to perform simple harmonic motion.
Using this model,
(a) write down the amplitude and period of the motion.

A ship needs a depth of 9 m before it can enter or leave the harbour.
(b) Show that on this day a ship must enter the harbour by 2.38 p.m., correct to the nearest minute, or wait for low tide to pass.

Given that a ship is not ready to enter the harbour until 5 p.m.,
(c) find, to the nearest minute, how long the ship must wait before it can enter the harbour.
\qquad
5. (a) Use integration to show that the centre of mass of a uniform solid right circular cone of height h is 43 h from the vertex of the cone.

A paperweight is made by removing material from the top half of a solid sphere of radius r so that the remaining solid consists of a hemisphere of radius r and a cone of height r and base radius r as shown in Figure.
(b) Find the distance of the centre of mass of the paperweight from its vertex.

Total: 13
\qquad
6. A car is travelling on a horizontal racetrack round a circular bend of radius 40 m . The coefficient of friction between the car and the road is $\frac{2}{5}$.
(a) Find the maximum speed at which the car can travel round the bend without slipping, giving your answer correct to 3 significant figures.

The owner of the track decides to bank the corner at an angle of 25° in order to enable the cars to travel more quickly.
(b) Show that this increases the maximum speed at which the car can travel round the bend without slipping by 63%, correct to the nearest whole number.

Total: 13
\qquad
7. A particle is travelling along the x-axis. At time $t=0$, the particle is at O and it travels such that its velocity, $v \mathrm{~ms}^{-1}$, at a distance x metres from O is given by

$$
v=\frac{2}{x+1} .
$$

The acceleration of the particle is $a \mathrm{~ms}^{-2}$.
(a) Show that $a=\frac{-4}{(x+1)^{3}}$.

The points A and B lie on the x-axis. Given that the particle travels d metres from O to A in T seconds and 4 metres from A to B in 9 seconds,
(b) show that $d=1.5$,
(c) find T.
\qquad

