Solomon Practice Paper

Mechanics 3B

Time allowed: 90 mintues

	Question	Points	Score
Centre:	1	7	
	2	8	
Name:	3	8	
Teacher:	4	12	
	5	13	
	6	13	
	7	14	

Γ

Τ

Total:

75

Τ

How I can achieve better:

- •
- •
- _
- -
- •
- •
- •

1. A student is attempting to model the expansion of an airbag in a car following a collision.

The student considers the displacement from the steering column, s metres, of a point P on the airbag t seconds after a collision and uses the formula

$$s = e^{3t} - 1, \qquad 0 \le t \le 0.1$$

Using this model,

(a) find, correct to the nearest centimetre, the maximum displacement of P,
(b) find the initial velocity of P,
(c) find the acceleration of P in terms of t.
(d) Explain why this model is unlikely to be realistic.

Total: 7

2. A particle P is attached to one end of a light elastic string of modulus of elasticity 80 N. The other end of the string is attached to a fixed point A.

When a horizontal force of magnitude 20N is applied to P, it rests in equilibrium with the string making an angle of 30° with the vertical and AP = 1.2m as shown in Figure.

- (a) Find the tension in the string. [3]
- (b) Find the elastic potential energy stored in the string.

[5]

3. A particle of mass m is suspended at a point A vertically below a fixed point O by a light inextensible string of length a as shown in Figure.

The particle is given a horizontal velocity u and subsequently moves along a circular arc until it reaches the point B where the string becomes slack.

Given that the point B is at a height $\frac{1}{2}a$ above the level of O,

(a) show that $\angle BOA = 120^{\circ}$, [2] (b) show that $u^2 = \frac{7}{2}ga$. [6] Total: 8

www.CasperYC.club Last updated: November 20, 2020

4. On a particular day, high tide at the entrance to a harbour occurs at 11a.m. and the water depth is 14m. Low tide occurs 6¹/₄ hours later at which time the water depth is 6m. In a model of the situation, the water level is assumed to perform simple harmonic motion. Using this model,

(a) write down the amplitude and period of the motion.

(a) write down the amplitude and period of the motion.
(b) Show that on this day a ship must enter the harbour by 2.38p.m., correct to the nearest minute, or wait for low tide to pass.
(c) find, to the nearest minute, how long the ship must wait before it can enter the harbour.
(d) find, to the nearest minute, how long the ship must wait before it can enter the harbour.

www.CasperYC.club Last updated: November 20, 2020

5. (a) Use integration to show that the centre of mass of a uniform solid right circular cone of [6] height h is 43h from the vertex of the cone.

A paperweight is made by removing material from the top half of a solid sphere of radius r so that the remaining solid consists of a hemisphere of radius r and a cone of height r and base radius r as shown in Figure.

(b) Find the distance of the centre of mass of the paperweight from its vertex.

Total: 13

[7]

- 6. A car is travelling on a horizontal racetrack round a circular bend of radius 40m. The coefficient of friction between the car and the road is $\frac{2}{5}$.
 - (a) Find the maximum speed at which the car can travel round the bend without slipping, [5] giving your answer correct to 3 significant figures.

The owner of the track decides to bank the corner at an angle of 25° in order to enable the cars to travel more quickly.

(b) Show that this increases the maximum speed at which the car can travel round the bend [8] without slipping by 63%, correct to the nearest whole number.

Total: 13

Mechanics – Practice Paper 3B

7. A particle is travelling along the x-axis. At time t = 0, the particle is at O and it travels such that its velocity, $v \text{ ms}^{-1}$, at a distance x metres from O is given by

$$v = \frac{2}{x+1}.$$

The acceleration of the particle is $a \text{ ms}^{-2}$.

(a) Show that
$$a = \frac{-4}{(x+1)^3}$$
. [4]

The points A and B lie on the x-axis. Given that the particle travels d metres from O to A in T seconds and 4 metres from A to B in 9 seconds,

- (b) show that d = 1.5, [8] [2]
- (c) find T.

Total: 14