Solomon Practice Paper

Mechanics 2D

Time allowed: 90 mintues

Centre:

Name:
Teacher:

Question	Points	Score
1	6	
2	6	
3	10	
4	12	
5	13	
6	14	
7	14	
Total:	75	

How I can achieve better:

1. A particle P moves such that at time t seconds its position vector, r metres, relative to a fixed origin O is given by

$$
\mathbf{r}=\left(\frac{3}{2} t^{2}-3 t\right) \mathbf{i}+\left(\frac{1}{3} t^{3}-k t\right) \mathbf{j}
$$

where k is a constant and \mathbf{i} and \mathbf{j} are perpendicular horizontal unit vectors.
(a) Find an expression for the velocity of P at time t.
(b) Given that P comes to rest instantaneously, find the value of k.
\qquad
2. Two smooth spheres P and Q of equal radius and of mass $2 m$ and $5 m$ respectively, are moving towards each other along a horizontal straight line when they collide. After the collision, P and Q travel in opposite directions with speeds of $3 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively.

Given that the coefficient of restitution between the two particles is $\frac{1}{2}$, find the speeds of P and Q before the collision.
\qquad
3. A car of mass 1200 kg experiences a resistance to motion, R newtons, which is proportional to its speed, $v \mathrm{~ms}^{-1}$. When the power output of the car engine is 90 kW and the car is travelling along a horizontal road, its maximum speed is $50 \mathrm{~ms}^{-1}$.
(a) Show that $R=36 v$.

The car ascends a hill inclined at an angle θ to the horizontal where $\sin \theta=\frac{1}{14}$.
(b) Find, correct to 3 significant figures, the maximum speed of the car up the hill assuming that the power output of the engine is unchanged.
\qquad
4. Figure shows a uniform rod $A B$ of mass 2 kg and length $2 a$.

The end A is attached by a smooth hinge to a fixed point on a vertical wall so that the rod can rotate freely in a vertical plane. A mass of 6 kg is placed at B and the rod is held in a horizontal position by a light string joining the midpoint of the rod to a point C on the wall, vertically above A. The string is inclined at an angle of 60° to the wall.
(a) Show that the tension in the string is $28 g$.
(b) Find the magnitude and direction of the force exerted by the hinge on the rod, giving your answers correct to 3 significant figures.
\qquad
5. A particle P moves in a straight line with an acceleration of $(6 t-10) \mathrm{ms}^{-2}$ at time t seconds. Initially P is at O, a fixed point on the line, and has velocity $3 \mathrm{~ms}^{-1}$.
(a) Find the values of t for which the velocity of P is zero.
(b) Show that, during the first two seconds, P travels a distance of $6 \frac{26}{27} \mathrm{~m}$.

Total: 13
\qquad
6. A football player strikes a ball giving it an initial speed of $14 \mathrm{~ms}^{-1}$ at an angle α to the horizontal as shown in Figure.

At the instant he strikes the ball it is 0.6 m vertically above the point P on the ground. The trajectory of the ball is in a vertical plane containing P and M, the middle of the goal-line. The distance between P and M is 12 m and the ground is horizontal.

Given that the ball passes over the point M without bouncing,
(a) find, to the nearest degree, the minimum value of α.

Given that the crossbar of the goal is 2.4 m above M and that $\tan \alpha=\frac{4}{3}$,
(b) show that the ball passes 4.2 m vertically above the crossbar.
\qquad
7. Figure shows a hotel 'key' consisting of a rectangle $O A B D$, where $O A=8 \mathrm{~cm}$ and $O D=4 \mathrm{~cm}$, joined to a semicircle whose diameter $B C$ is 4 cm long.

The thickness of the key is negligible and the same material is used throughout.
The key is modelled as a uniform lamina.
Using this model,
(a) find, correct to 3 significant figures, the distance of the centre of mass from

A small circular hole of negligible diameter is made at the mid-point of $B C$ so that the key can be hung on a smooth peg. When the key is freely suspended from the peg,
(b) find, correct to 3 significant figures, the acute angle made by $O A$ with the vertical.
\qquad

