## Solomon Practice Paper

## Mechanics 2D

Time allowed: 90 mintues

Centre:

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 6      |       |
| 2        | 6      |       |
| 3        | 10     |       |
| 4        | 12     |       |
| 5        | 13     |       |
| 6        | 14     |       |
| 7        | 14     |       |
| Total:   | 75     |       |

## How I can achieve better:

- •
- •
- •
- •



1. A particle P moves such that at time t seconds its position vector, r metres, relative to a fixed origin O is given by

$$\mathbf{r} = \left(\frac{3}{2}t^2 - 3t\right)\mathbf{i} + \left(\frac{1}{3}t^3 - kt\right)\mathbf{j},$$

where k is a constant and  $\mathbf{i}$  and  $\mathbf{j}$  are perpendicular horizontal unit vectors.

(a) Find an expression for the velocity of P at time t.

[3]

[3]

(b) Given that P comes to rest instantaneously, find the value of k.

Total: 6

[6]

| 2. | Two smooth spheres $P$ and $Q$ of equal radius and of mass $2m$ and $5m$ respectively, are moving towards each other along a horizontal straight line when they collide. After the collision, $P$ and $Q$ travel in opposite directions with speeds of $3~{\rm ms}^{-1}$ and $4~{\rm ms}^{-1}$ respectively. |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    | Given that the coefficient of restitution between the two particles is $\frac{1}{2}$ , find the speeds of $P$ and $Q$ before the collision.                                                                                                                                                                  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

Last updated: November 20, 2020



[4]

[6]

10

| 3. | A car of mass 1200kg experiences a resistance to motion, $R$ newtons, which is proportional to its speed, $v \text{ ms}^{-1}$ . When the power output of the car engine is 90 kW and the car is travelling along a horizontal road, its maximum speed is 50 ms <sup>-1</sup> . |       |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|
|    | (a) Show that $R = 36v$ .                                                                                                                                                                                                                                                      |       |  |  |  |  |  |
|    | The car ascends a hill inclined at an angle $\theta$ to the horizontal where $\sin \theta = \frac{1}{14}$ .                                                                                                                                                                    |       |  |  |  |  |  |
|    | (b) Find, correct to 3 significant figures, the maximum speed of the car up the hill assuming that the power output of the engine is unchanged.                                                                                                                                | g     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | Total |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                | _     |  |  |  |  |  |



4. Figure shows a uniform rod AB of mass 2kg and length 2a.



The end A is attached by a smooth hinge to a fixed point on a vertical wall so that the rod can rotate freely in a vertical plane. A mass of 6kg is placed at B and the rod is held in a horizontal position by a light string joining the midpoint of the rod to a point C on the wall, vertically above A. The string is inclined at an angle of  $60^{\circ}$  to the wall.

| ( | a`  | Show     | that  | the | tension   | in  | the | string | is | 28a. |
|---|-----|----------|-------|-----|-----------|-----|-----|--------|----|------|
| ١ | . ~ | , 211011 | CIICO | OII | COILDIOIL | 111 | OIL | 8      | 10 | -0.9 |

[4]

[8]

(b) Find the magnitude and direction of the force exerted by the hinge on the rod, giving your answers correct to 3 significant figures.

Total: 12

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |



| Initially $P$ is at $O$ , a fixed point on the line, and has velocity $3 \text{ ms}^{-1}$ . |           |
|---------------------------------------------------------------------------------------------|-----------|
| (a) Find the values of $t$ for which the velocity of $P$ is zero.                           | [6        |
| (b) Show that, during the first two seconds, $P$ travels a distance of $6\frac{26}{27}$ m.  | [7        |
|                                                                                             | Total: 13 |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |
|                                                                                             |           |

Last updated: November 20, 2020



6. A football player strikes a ball giving it an initial speed of 14 ms<sup>-1</sup> at an angle  $\alpha$  to the horizontal as shown in Figure.



At the instant he strikes the ball it is 0.6 m vertically above the point P on the ground. The trajectory of the ball is in a vertical plane containing P and M, the middle of the goal-line. The distance between P and M is 12 m and the ground is horizontal.

Given that the ball passes over the point M without bouncing,

(a) find, to the nearest degree, the minimum value of  $\alpha$ .

[8]

[6]

Given that the crossbar of the goal is 2.4 m above M and that  $\tan \alpha = \frac{4}{3}$ ,

(b) show that the ball passes 4.2m vertically above the crossbar.

Total: 14



7. Figure shows a hotel 'key' consisting of a rectangle OABD, where OA = 8 cm and OD = 4 cm, joined to a semicircle whose diameter BC is 4 cm long.



The thickness of the key is negligible and the same material is used throughout.

The key is modelled as a uniform lamina.

Using this model,

(a) find, correct to 3 significant figures, the distance of the centre of mass from

[10]

A small circular hole of negligible diameter is made at the mid-point of BC so that the key can be hung on a smooth peg. When the key is freely suspended from the peg,

(b) find, correct to 3 significant figures, the acute angle made by OA with the vertical.

Total: 14

[4]