Solomon Practice Paper

Mechanics 2B

Time allowed: 90 mintues

Centre:

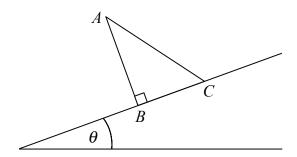
Name:

Teacher:

Question	Points	Score
1	7	
2	7	
3	10	
4	10	
5	10	
6	15	
7	16	
Total:	75	

How I can achieve better:

- •
- •
- •
- •


1.	A bullet of mass 25g is fired directly at a fixed wooden block of thickness 4cm and passes through it. When the bullet hits the block, it is travelling horizontally at 200 ms ⁻¹ . The block exerts a constant resistive force of 8000N on the bullet.	
	(a) Find the work done by the block on the bullet.	[2]
	By using the Work-Energy principle,	
	(b) show that the bullet emerges from the block with speed 120 ms^{-1} .	[5]
		Total: 7
		-
		-
		-
		-
		-
		-
		-
		_
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-

2.	A car is travelling along a straight horizontal road against resistances to motion which are constant and total 2000 N. When the engine of the car is working at a rate of H kilowatts, the maximum speed of the car is $30~{\rm ms}^{-1}$.	
	(a) Find the value of H .	[3]
	The car driver wishes to overtake another vehicle so she increases the rate of working of the engine by 20% and this results in an initial acceleration of $0.32~\mathrm{ms}^{-2}$.	
	Assuming that the resistances to motion remain constant,	
	(b) find the mass of the car.	[4]
		Total: 7

3. Figure shows a uniform triangular lamina ABC placed with edge BC along the line of greatest slope of a plane inclined at an angle θ to the horizontal.

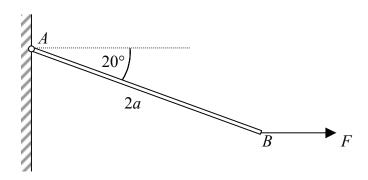
The lengths AC and BC are 15 cm and 9 cm respectively and $\angle ABC$ is a right angle.

(a) Find the distance of the centre of mass of the lamina from

[6]

Total: 10

- i. AB,
- ii. BC.


Assuming that the plane is rough enough to prevent the lamina from slipping,

(b) find in degrees, correct to 1 decimal place, the maximum value of θ for which the lamina remains in equilibrium. [4]

4.	The velocity $v \text{ ms}^{-1}$ of a particle P at time t seconds is given by $v = 3t\mathbf{i} - t^2\mathbf{j}$.	
	(a) Find the magnitude of the acceleration of P when $t=2$.	[4]
	When $t = 0$, the displacement of P from a fixed origin O is $(6\mathbf{i} + 12\mathbf{j}) \text{ ms}^{-1}$, where \mathbf{i} and \mathbf{j} are perpendicular horizontal unit vectors.	;
	(b) Show that the displacement of P from O when $t = 6$ is given by $k(\mathbf{i} - \mathbf{j})m$, where k is an integer which you should find.	[6]
	r	Total: 10
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		=
		-
		-
		-
		-
		-
		-

5. A uniform rod AB of length 2a and mass 8kg is smoothly hinged to a vertical wall at A.

The rod is held in equilibrium inclined at an angle of 20° to the horizontal by a force of magnitude F newtons acting horizontally at B which is below the level of A as shown in Figure.

(a) Find, correct to 3 significant figures, the value of F.

[4] [6]

(b) Show that the magnitude of the reaction at the hinge is 133 N, correct to 3 significant figures, and find to the nearest degree the acute angle which the reaction makes with the vertical.

Total: 10

6.	A particle P is projected from a point A on horizontal ground with speed u at an angle of elevation α and moves freely under gravity.		
	P hits the ground at the point B .		
	(a) Show that $AB = gu2\sin(2\alpha)$.		[6]
	An archer fires an arrow with an initial speed of 45 ms ⁻¹ at a target which is level with the point of projection and at a distance of 80 m. Given that the arrow hits the target,		
	(b) find in degrees, correct to 1 decimal place, the two possible angles of projection.		[٢]
			[5]
	(c) Write down, with a reason, which of the two possible angles of projection would give the shortest time of flight.		[2]
	(d) Show that the minimum time of flight is 1.8 seconds, correct to 1 decimal place.		[2]
	${ m T}$	otal:	15
	<u> </u>		

[7]

[9]

16

7.	A smooth sphere A of mass $4m$ is moving on a smooth horizontal plane with speed u . It collides directly with a stationary smooth sphere B of mass $5m$ and with the same radius as A .	S
	The coefficient of restitution between A and B is $\frac{1}{2}$.	
	(a) Show that after the collision the speed of B is 4 times greater than the speed of A .	
	Sphere B subsequently hits a smooth vertical wall at right angles. After rebounding from the wall, B collides with A again and as a result of this collision, B comes to rest.	е
	Given that the coefficient of restitution between B and the wall is e,	
	(b) find e.	Total
		Totar
		_
		_
		_
		_
		_
		_
		=
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

