Solomon Practice Paper

Mechanics 1D

Time allowed: 90 mintues

Centre:

Name:

Teacher:

How I can achieve better:

- •
- •
- •

Question	Points	Score
1	5	
2	6	
3	7	
4	10	
5	10	
6	11	
7	12	
8	14	
Total:	75	

. A particle, P , of mass 5kg moves with speed 3 ms ⁻¹ along a smooth horizontal tra a particle Q of mass 2kg which is at rest on the track. Immediately after the collisi move in the same direction with speeds v and $2v$ ms ⁻¹ respectively.	
(a) Calculate the value of v .	[3]
(b) Calculate the magnitude of the impulse received by Q on impact.	[2]
	Total: 5

(a) Find the angle in degrees that the velocity vector of P makes with the vector \mathbf{i} .	
(b) Calculate the distance of P from O when $t = 2$.	
	Total:
	rotar.

3.	A car of mass 1250kg is moving at constant speed up a hill, inclined at an angle α to the horizontal, where $\sin(\alpha) = \frac{1}{10}$. The driving force produced by the engine is 1800N.			
	(a) Calculate the resistance to motion which the car experiences.	[4]		
	At the top of the hill, the road becomes horizontal.			
	(b) Find the initial acceleration of the car.	[3]		
		Total: 7		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		
		_		

A non-uniform plank AB of mass 20kg and length 6m is supported at a horizontal. When a woman of mass 60kg stands on the plank at a distant magnitude of the reaction at A is $35gN$.	
(a) Suggest a suitable model for	[2]
i. the plank,	[]
ii. the woman.	
(b) Calculate the magnitude of the reaction at B , giving your answer in	terms of g . [2]
(c) Explain briefly, in the context of the problem, the term 'non-uniform	
(d) Find the distance of the centre of mass of the plank from A.	[4]
	Total: 10
	100001 10

[10]

5. The points A, O and B lie on a straight horizontal track as shown in Figure. A is 20m from O and B is on the other side of O at a distance xm from O.

	— 20 m—	→-	— <i>x</i> m—	
A		0		В

At time t = 0, a particle P starts from rest at O and moves towards B with uniform acceleration of 3 ms⁻². At the same instant, another particle Q, which is at the point A, is moving with a velocity of 3 ms⁻¹ in the direction of O with uniform acceleration of 4 ms⁻² in the same direction.

Given that the Q collides with P at B , find the value of x .			

[6]

[5]

11

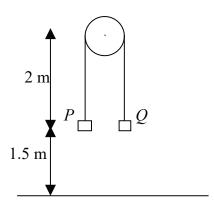
6.	 A sledge of mass 4kg rests in limiting equilibrium on a rough slope inclined at an angle 10° to the horizontal. By modelling the sledge as a particle, (a) show that the coefficient of friction, μ, between the sledge and the ground is 0.176 correct to 3 significant figures. The sledge is placed on a steeper part of the slope which is inclined at an angle 30° to the horizontal. The value of μ remains unchanged. 			
	(b) Find the minimum extra force required along the line of greatest slope to prevent the sledge from slipping down the hill.			
	${ m T}$	otal		

[3]

[2]

[5]

[2]


12

Whilst looking over the edge of a vertical cliff, 122.5 metres in height, Jim dislodges a stone. The stone falls freely from rest towards the sea below.	
Ignoring the effect of air resistance,	
(a) calculate the time it would take for the stone to reach the sea,	
(b) find the speed with which the stone would hit the water.	
Γwo seconds after the stone begins to fall, Jim throws a tennis ball downwards at the stone.	
The tennis ball's initial speed is $u \text{ ms}^{-1}$ and it hits the stone before they both reach the water.	
(c) Find the minimum value of u .	
(d) If you had taken air resistance into account in your calculations, what effect would this have had on your answer to part (c)? Explain your answer.	
	otal

[4]

8. Figure shows two particles P and Q, of mass 3kg and 2kg respectively, attached to the ends of a light, inextensible string which passes over a smooth, fixed pulley.

The system is released from rest with P and Q at the same level 1.5 metres above the ground and 2 metres below the pulley.

- (a) Show that the initial acceleration of the system is $5g \text{ ms}^{-2}$.
- (b) Find the tension in the string. [2]
- (c) Find the speed with which P hits the ground. [3]

When P hits the ground, it does not rebound.

(d) What is the closest that Q gets to the pulley.

[5] Total: 14