Solomon Practice Paper

Mechanics 3D

Time allowed: 90 mintues

Centre:

Name:
Teacher:

Question	Points	Score
1	7	
2	7	
3	9	
4	10	
5	11	
6	13	
7	18	
Total:	75	

How I can achieve better:

1. The mechanism for releasing the ball on a pinball machine contains a light elastic spring of natural length 15 cm and modulus of elasticity λ. The spring is held compressed to a length of 9 cm by a force of 4.5 N .
(a) Find λ.
(b) Find the work done in compressing the spring from a length of 9 cm to a length of 5 cm .
2. A small bead P is threaded onto a smooth circular wire of radius 0.8 m and centre O which is fixed in a vertical plane. The bead is projected from the point vertically below O with speed u ms^{-1} and moves in complete circles about O.
(a) Suggest a suitable model for the bead.
(b) Given that the minimum speed of P is 60% of its maximum speed, use the principle of conservation of energy to show that $u=7$.
3. At time t seconds the acceleration, $a \mathrm{~ms}^{-2}$, of a particle is given by

$$
a=\frac{4}{(1+t)^{3}} .
$$

When $t=0$, the particle has velocity $1 \mathrm{~ms}^{-1}$ and displacement 3 m from a fixed origin O.
(a) Find an expression for the velocity of the particle in terms of t.
(b) Show that when $t=3$ the particle is 10.5 m from O.
4. A particle of mass 0.5 kg is moving on a straight line with simple harmonic motion. At time $t=0$ the particle is instantaneously at rest at the point A. It next comes instantaneously to rest 3 seconds later at the point B where $A B=4 \mathrm{~m}$.
(a) For the motion of the particle write down
i. the period,
ii. the amplitude.
(b) Find the maximum kinetic energy of the particle in terms of π.

The point C lies on $A B$ at a distance of 1.2 m from B.
(c) Find the time it takes the particle to travel directly from A to C, giving your answer in seconds correct to 2 decimal places.
5. When a particle of mass M is at a distance of x metres from the centre of the moon, the gravitational force, $F \mathrm{~N}$, acting on it and directed towards the centre of the moon is given by

$$
F=\frac{\left(4.90 \times 10^{12}\right) M}{x^{2}} .
$$

A rocket is projected vertically into space from a point on the surface of the moon with initial speed $u \mathrm{~ms}^{-1}$. Given that the radius of the moon is $\left(1.74 \times 10^{6}\right) \mathrm{m}$,
(a) show that the speed of the rocket, $v \mathrm{~ms}^{-1}$, when it is x metres from the centre of the moon is given by

$$
v^{2}=u^{2}+\frac{a}{x}-b,
$$

where a and b are constants which should be found correct to 3 significant figures.
(b) Find, correct to 2 significant figures, the minimum value of u needed for the rocket to escape the moon's gravitational attraction.

6．Figure shows a bowl formed by removing from a solid hemisphere of radius $\frac{3}{2} r$ ，a smaller hemi－ sphere of radius r having the same axis of symmetry and the same plane face．

（a）Show that the centre of mass of the bowl is a distance of $\frac{195}{304} \mathrm{r}$ from its plane face．
The bowl has mass M and is placed with its curved surface on a smooth horizontal plane．A stud of mass $\frac{1}{2} M$ is attached to the outer rim of the bowl．

When the bowl is in equilibrium its plane surface is inclined at an angle α to the horizontal as shown in Figure．
（b）Find $\tan \alpha$ ．

7．A cyclist is travelling round a circular bend of radius 25 m on a track which is banked at an angle of 35° to the horizontal．

In a model of the situation，the cyclist and her bicycle are represented by a particle of mass 60 kg and air resistance and friction are ignored．

Using this model and assuming that the cyclist is not slipping，
（a）find，correct to 3 significant figures，the speed at which she is travelling．
In tests it is found that the cyclist must travel at a minimum speed of $10 \mathrm{~ms}^{-1}$ to prevent the bicycle from slipping down the slope．A more refined model is now used with a coefficient of friction between the bicycle and the track of μ ．
Using this model，
（b）show that $\mu=0.227$ ，correct to 3 significant figures，
（c）find，correct to 2 significant figures，the maximum speed at which the cyclist can travel without slipping up the slope．

