Solomon Practice Paper

Further Pure Mathematics 3F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	6	
2	8	
3	11	
4	11	
5	11	
6	13	
7	15	
Total:	75	

How I can achieve better:

- •

- •

July 14, 2025

1. Prove by induction that, for all $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} \ln \frac{r+1}{r} = \ln(n+1).$$

www.CasperYC.club

Further Mathematics – Practice Paper 3F

2.

$$\mathbf{M} = \begin{pmatrix} 2 & 3 \\ 3 & -6 \end{pmatrix}.$$

(a) Find the eigenvalues of **M**.

(b) Find eigenvectors corresponding to each eigenvalue found in part (a).

[4]

[4]

Total: 8

www.CasperYC.club

Further Mathematics – Practice Paper 3F

3. A transformation T from the z-plane to the w-plane is defined by

$$w = \frac{z+2\mathbf{i}}{z-\mathbf{i}}, \qquad z \neq \mathbf{i},$$

where $z = x + \mathbf{i}y$, $w = u + \mathbf{i}v$ and x, y, u and v are real.

(a) Show that the circle |z| = 1 is mapped onto a straight line in the *w*-plane under *T* and find [5] an equation of the line.

The circle $|z - (a + \mathbf{i}b)| = r$ in the z-plane is mapped under T onto the circle |w| = 2 in the w-plane, where a, b and r are real.

(b) Find the values of a, b and r.

Total: 11

[6]

- 4. The points A, B and C with coordinates $(x_{-1}, y_{-1}), (x_0, y_0)$ and (x_1, y_1) respectively lie on the curve y = f(x) with $x_1 x_0 = x_0 x_{-1} = h$.
 - (a) Use the first three terms of the Taylor series expansion in ascending powers of $(x x_0)$ to [5] show that

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$$

The variable y satisfies the differential equation

$$\frac{d^2y}{dx^2} + (x+2)\frac{dy}{dx} - 3y = 0 \quad \text{with } y = 1 \text{ at } x = 0 \text{ and } y = 1.2 \text{ at } x = 0.1.$$

(b) Use the approximations

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_{-1}}{2h}$$

and

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$$

with a step length of 0.1 to estimate the value of y at x = 0.2.

Total: 11

[6]

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3\\ 4 & q & 1\\ 1 & 2 & -1 \end{pmatrix}, \qquad q \neq 4\frac{1}{4}.$$

(a) Find \mathbf{A}^{-1} in terms of q.

(b) Hence, or otherwise, solve the simultaneous equations

showing your working clearly.

Total: 11

[7] [4] 6. Given that

$$y = \sqrt{1 - x^2} \cos^{-1}(x)$$

(a) show that

$$(1-x^2)\frac{\mathrm{d}y}{\mathrm{d}x} + xy - x^2 + 1 = 0.$$
 (*)

(b) By differentiating equation (*) twice, or otherwise, obtain the Maclaurin expansion of $y = \sqrt{1 - x^2} \cos^{-1}(x)$ up to and including the term in x^3 . [8]

Total: 13

[5]

www.CasperYC.club

7. The plane Π_1 has vector equation

$$\mathbf{r} = 3\mathbf{i} + \mathbf{j} - 4\mathbf{k} + \lambda \left(\mathbf{j} + 2\mathbf{k}\right) + \mu \left(\mathbf{i} + \mathbf{j} + \mathbf{k}\right).$$

- (a) Find a vector **n** which is normal to Π_1 .
- (b) Hence find a vector equation of Π_1 in the form $\mathbf{r.n} = p$.
- (c) Find the perpendicular distance between Π_1 and the point A with position vector $2\mathbf{i}+\mathbf{j}+4\mathbf{k}$, [4] giving your answer in the form $a\sqrt{6}$, where $a \in \mathbb{Q}$.

The plane Π_2 has equation $\mathbf{r}.(\mathbf{i} + b\mathbf{j}) = -4$.

The angle between Π_1 and Π_2 is 30°.

(d) Find the possible values of the constant b.

Total: 15

[6]

[3]

[2]