Solomon Practice Paper

Further Pure Mathematics 3B

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	5	
3	5	
4	6	
5	11	
6	12	
7	14	
8	17	
Total:	75	

How I can achieve better:

Last updated: July 14, 2025

1. Given that x is so small that terms in x^3 and higher powers of x may be neglected, find the [5] values of the constants a and b for which

$$\frac{\ln(1+ax)}{1+bx} = 3x + \frac{3}{2}x^2.$$

2. Given that

- (a) sketch, in an Argand diagram, the locus of z,
- (b) find the maximum value of $\arg z$ in degrees to one decimal place.

Total: 5

[2]

[3]

3. (a) Show that

 $\cosh(\mathbf{i}x) = \cosh(x) \quad \text{where } x \in \mathbb{R}.$

(b) Hence, or otherwise, solve the equation

$$\cosh(\mathbf{i}x) = \mathrm{e}^{\mathbf{i}x}$$

for $0 \leq x < 2\pi$.

Total: 5

[2]

[3]

[6]

4. Given that

$$u_{n+2} = 5u_{n+1} - 6u_n$$
 for $n \ge 1$, $u_1 = 2$ and $u_2 = 4$,

prove by induction that $u_n = 2_n$ for all integers $n, n \ge 1$.

www.CasperYC.club

5.

$$\mathbf{M} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -4 \\ x & 3 & -1 \end{pmatrix}$$

(a) Given that $\lambda = -1$ is an eigenvalue of M , find the value of x.	[3]
(b) Show that $\lambda = -1$ is the only real eigenvalue of M .	[6]
(c) Find an eigenvector corresponding to the eigenvalue $\lambda = -1$.	[2]
	Total: 11

Last updated: July 14, 2025

6. A student is looking at different methods of solving the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = xy, \qquad y = 1 \quad \text{at} \quad x = 0.2.$$

The first method the student tries is to use the approximation

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 \approx \frac{y_1 - y_0}{h}$$

twice with a step length of 0.1 to obtain an estimate for y at x = 0.4.

(a) Find the value of the student's estimate for y at x = 0.4.

The student then realises that the exact value of y at x = 0.4 can be found using integration.

- (b) Use integration to find the exact value of y at x = 0.4.
- (c) Find, correct to 1 decimal place, the percentage error in the estimated value in part (a). [2]

Total: 12

[6]

[4]

www.CasperYC.club

Last updated: July 14, 2025

Further Mathematics – Practice Paper 3B

7. (a) Given that $z = \cos \theta + \mathbf{i} \sin \theta$, show that

$$z^n + \frac{1}{z^n} = 2\cos(n\theta)$$
 and $z^n - \frac{1}{z^n} = 2\mathbf{i}\sin(n\theta)$,

where n is a positive integer.

(b) Given that

$$\cos^4(\theta) + \sin^4(\theta) = A\cos(4\theta) + B,$$

find the values of the constants A and B.

(c) Hence find the exact value of

$$\int_0^{\frac{\pi}{8}} \cos^4(\theta) + \sin^4(\theta) \,\mathrm{d}\theta.$$

Total: 14

[8]

[3]

[3]

Further Mathematics – Practice Paper 3B

8. The points A, B, C and D have coordinates $(3, -1, 2), (-2, 0, -1), (1, 2, 6)$ and $(-1, -5, 8)$ re-	
spectively, relative to the origin O .	
(a) Find $\overrightarrow{AB} \times \overrightarrow{AC}$.	[5]
(b) Find the volume of the tetrahedron $ABCD$.	[3]
The plane Π contains the points A, B and C .	
(c) Find a vector equation of Π in the form $\mathbf{r}.\mathbf{n} = p$.	[3]
The perpendicular from D to Π meets the plane at the point E .	
(d) Find the coordinates of E .	[6]
Т	otal: 17

Page 8 of 8 $\,$

www.CasperYC.club

Last updated: July 14, 2025