## Solomon Practice Paper

Further Pure Mathematics 2H

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

| Question | Points | Score |
|----------|--------|-------|
| 1        | 8      |       |
| 2        | 8      |       |
| 3        | 8      |       |
| 4        | 9      |       |
| 5        | 11     |       |
| 6        | 13     |       |
| 7        | 18     |       |
| Total:   | 75     |       |

How I can achieve better:

- •

- •



July 14, 2025



1. A curve has the equation

$$2x^2 + y^2 = 4.$$

Find the radius of curvature of the curve at the point  $(1, -\sqrt{2})$ .



# Further Mathematics – Practice Paper 2H

| even function.<br>(b) Given that $x > 0$ and $y > 0$ , solve the simultation | aneous equations                       | [              |
|------------------------------------------------------------------------------|----------------------------------------|----------------|
|                                                                              | $= \cosh^{-1}\left(\frac{5}{3}\right)$ |                |
|                                                                              | ,                                      | Total:         |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        |                |
|                                                                              |                                        | ))<br>()<br>() |
| w.CasperYC.club Last updated: J                                              | fulv 14. 2025                          |                |

3. Find

$$\int \frac{1}{13\cosh(x) - 5\sinh(x)} \, \mathrm{d}x.$$



4. (a) Given that  $y = \sin^{-1}(2x - 1)$ , prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x - x^2}}.$$

The tangent to the curve  $y = \sin^{-1}(2x - 1)$  at the point where  $x = \frac{3}{4}$  meets the *y*-axis at *A*. (b) Find the exact value of the *y*-coordinate of *A*.

Total: 9

[5]

#### Further Mathematics – Practice Paper 2H

- 5. The point  $P(at^2, 2at), t \neq 0$ , lies on the parabola C with equation  $y^2 = 4ax$ .
  - (a) Show that an equation of the tangent to C at P is

$$yt = x + at^2$$

| The tangent to $C$ at $P$ meets the x-axis at $Q$ and the y-axis at $R$ . |
|---------------------------------------------------------------------------|
| M is the mid-point of $QR$ .                                              |
| (b) Find the coordinates of $M$ .                                         |

Given that OM is perpendicular to OP, where O is the origin,

(c) show that  $t^2 = 2$ .

Total: 11

[3]

[4]

[4]

## Page 5 of 7



www.CasperYC.club

Last updated: July 14, 2025

6.

$$I_n = \int \frac{\cos(n\theta)}{\sin(\theta)} \,\mathrm{d}\theta, \qquad n \in \mathbb{N}.$$

(a) By considering  $I_n - I_{n-2}$ , or otherwise, show that

$$I_n = \frac{2\cos((n-1)\theta)}{n-1} + I_{n-2}.$$

(b) Hence evaluate

# $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(5\theta)}{\sin(\theta)} \,\mathrm{d}\theta,$

leaving your answer in terms of natural logarithms.

Total: 13

www.CasperYC.club



[8]

[5]

7. The ellipse C has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

where a and b are positive constants and a > b.

The coordinates of the foci of C are  $(\pm\sqrt{3}, 0)$ , and the equations of its directrices are  $x = \pm \frac{4}{\sqrt{3}}$ .

(a) Find the value of a and the value of b.

The ellipse is rotated completely about the x-axis.

(b) Show that the area of the surface of revolution generated is given by

$$A = \frac{\pi}{2} \int_{-2}^{2} \sqrt{16 - 3x^2} \, \mathrm{d}x.$$

(c) Use integration to show that

$$A = \frac{8}{9}\pi^2\sqrt{3} + 2\pi.$$
 [8]

| Total: | 18 |
|--------|----|
|--------|----|

[4]

[6]

| www.Ca | sperYC.club |  |
|--------|-------------|--|