Solomon Practice Paper

Further Pure Mathematics 2F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	7	
3	7	
4	9	
5	10	
6	11	
7	12	
8	15	
Total:	75	

How I can achieve better:

•

•

[4]

	$f(x) = \tanh^{-1}(\sin(x)).$	
Show that $f'(x) = \sec(x)$.		

[7]

	natural loga		

[7]

3.	Α	curve	has	parametric	equations
----	---	-------	-----	------------	-----------

$$x = t^2$$
 and $y = t^3$,

Show that the radius of curvature of the curve at the point (1,1) is $\frac{13\sqrt{3}}{6}$.

 ${\bf www. Casper YC. club}$ Last updated: July 14, 2025 4.

$$I_n = \int_1^e \left[\ln(x) \right]^n dx.$$

(a) Prove that, for $n \in \mathbb{Z}^+$,

 $I_n = e - nI_{n-1}.$

(b) Find I_3 , leaving your answer in terms of e.

Total: 9

[5]

[10]

5.

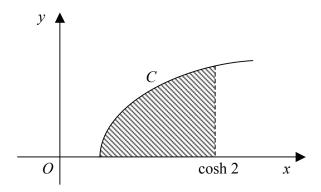


Figure above shows the curve C which has equation $y = \cosh^{-1}(x)$.

The shaded region bounded by C, the x-axis and the line $x = \cosh 2$ is rotated through 2π about the y-axis.

The volume of revolution of the solid generated is $a\pi$.

Find	the	value	of	a	to	one	decimal	p.	ace.

6.

$$f(x) \equiv \frac{3x - 7}{(x+1)(x^2+4)}, \quad x \neq -1.$$

- (a) Express f(x) in partial fractions. [4]
- (b) Show that

$$\int_0^2 f(x) dx = \frac{\pi}{8} + \ln\left(\frac{2}{9}\right).$$

Total: 11

[7]

Last updated: July 14, 2025

7. The ellipse C has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

where a and b are positive constants and a > b.

(a) Find an equation of the normal to C at the point $P(a\cos\theta, b\sin\theta)$.

[5]

The normal to C at P meets the x-axis at Q.

R is the foot of the perpendicular from P to the x-axis.

(b) Show that $\frac{OQ}{QR} = e^2$, where e is the eccentricity of C.

[7]

Total: 12

600

8.	(a)	Using the	definitions	of hyperbolic	functions in	terms	of exponential	functions	prove that	[6]
----	-----	-----------	-------------	---------------	--------------	-------	----------------	-----------	------------	-----

$$\sinh^{-1}(x) = \ln\left|x + \sqrt{x^2 + 1}\right|.$$

(b) On the same axes sketch the graphs of
$$y = \sinh x$$
 and $y = \sinh^{-1}(x)$. [3]

$$x = \sinh \left[\ln(3x - 2) \right], \qquad x > \frac{2}{3}.$$

Total:	15

[6]

