Solomon Practice Paper

Further Pure Mathematics 1D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score	
1	7		
2	8		
3	8		
4	10		
5	10		
6	15		
7	17		
Total:	75		

How I can achieve better:

- •

July 14, 2025

1. The function f is defined by

 $\mathbf{f}(x) \equiv 3x^3 + kx^2 + 42x + k,$

where k is an integer.

Given that	(3 + i)) is a roo ⁻	t of the	equation	f(x)) = 0,
------------	---------	-------------------------	----------	----------	------	--------

- (a) find a quadratic factor of f(x),
- (b) find the value of k.

[3]

[4]

Total: 7

2. Find the set of values of x for which

$$\frac{x}{x-1} > \frac{2}{3-x}.$$

www.CasperYC.club Last updated: July 14, 2025

3. Given that $y = \frac{1}{2}$ when x = 0, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 3x + 4xy = 0,$$

giving your answer in the form y = f(x).

www.CasperYC.club

Last updated: July 14, 2025

Further Mathematics – Practice Paper 1D

4. (a) Express $\frac{3r+4}{r(r+1)(r+2)}$ in partial fractions.

(b) Hence, show that

$$\sum_{r=1}^{n} \frac{3r+4}{r(r+1)(r+2)} = \frac{n(5n+9)}{2(n+1)(n+2)}.$$

Total: 10

Last updated: July 14, 2025

5. (a) Find the values of a, b and c such that $y = ax^2 + bx + c$ satisfies the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2\frac{\mathrm{d}y}{\mathrm{d}x} + 10y = 5x^2 - 13x + 1.$$

(b) Hence, find the general solution of this differential equation.

[5]

[5]

Total: 10

www.CasperYC.club

6.

$$f(x) \equiv \frac{2}{3}x + \sin(2x) - 1, \qquad x \in \mathbb{R}.$$

(a) By sketching the graphs of $y = \sin(2x)$ and $y = 1 - \frac{2}{3}x$ on the same diagram, find the [3] number of solutions to the equation f(x) = 0.

- (b) i. Show that one root, α , of the equation f(x) = 0 lies in the interval (2.5, 3).
 - ii. Use one application of the method of linear interpolation on this interval to find an approximate value for α , giving your answer correct to 2 decimal places.
 - iii. Determine whether or not your answer to part (ii) gives the value of α correct to 2 decimal places.
- (c) Use the Newton–Raphson method with a starting value of x = 0.5 to find another root of [5] the equation f(x) = 0 correct to 3 significant figures.

Total: 15

[7]

Figure below shows the curve C with polar equation

$$r = a \left[1 - \cos(\theta) \right], \quad 0 \le \theta < 2\pi,$$

where a is a positive constant.

At the points P and Q the tangents to the curve are parallel to the initial line $\theta = 0$.

(a) Find the polar coordinates of P and Q.

The shaded region is bounded by the curve C and the straight line PQ.

(b) Show that the area of the shaded region is $\frac{1}{16}a^2(8\pi + 9\sqrt{3})$.

Total: 17

[7]

[10]

www.CasperYC.club