Solomon Practice Paper

Core Mathematics 4H
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	8	
5	8	
6	10	
7	14	
8	16	
Total:	75	

How I can achieve better:

1. (a) Expand $(1+4 x)^{\frac{3}{2}}$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(b) State the set of values of x for which your expansion is valid.
2. Use the substitution $u=1+\sin (x)$ to find the value of

$$
\int_{0}^{\frac{\pi}{2}} \cos (x)(1+\sin (x))^{3} d x
$$

3. (a) Express

$$
\frac{x+11}{(x+4)(x-3)}
$$

as a sum of partial fractions.
(b) Evaluate

$$
\int_{0}^{2} \frac{x+11}{(x+4)(x-3)} \mathrm{d} x
$$

giving your answer in the form $\ln (k)$, where k is an exact simplified fraction.
4. Figure shows the curve with equation $y=2 \sin (x)+\csc (x), 0<x<\pi$.

The shaded region bounded by the curve, the x-axis and the lines $x=\frac{\pi}{6}$ and $x=\frac{\pi}{2}$ is rotated through 360° about the x-axis. Show that the volume of the solid formed is $\frac{1}{2} \pi(4 \pi+3 \sqrt{3})$.
5. A curve has the equation

$$
x^{2}-3 x y-y^{2}=12
$$

(a) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Find an equation for the tangent to the curve at the point $(2,-2)$.
6. Relative to a fixed origin, O, the points A and B have position vectors

$$
\left(\begin{array}{c}
1 \\
5 \\
-1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
6 \\
3 \\
-6
\end{array}\right)
$$

respectively.
Find, in exact, simplified form,
(a) the cosine of $\angle A O B$,
(b) the area of triangle $O A B$,
(c) the shortest distance from A to the line $O B$.
7. A curve has parametric equations

$$
x=t(t-1), \quad \text { and } \quad y=\frac{4 t}{1-t}, \quad t \neq 1 .
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The point P on the curve has parameter $t=-1$.
(b) Show that the tangent to the curve at P has the equation $x+3 y+4=0$.

The tangent to the curve at P meets the curve again at the point Q.
(c) Find the coordinates of Q.
8. An entomologist is studying the population of insects in a colony.

Initially there are 300 insects in the colony and in a model, the entomologist assumes that the population, P, at time t weeks satisfies the differential equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P
$$

where k is a constant.
(a) Find an expression for P in terms of k and t.

Given that after one week there are 360 insects in the colony,
(b) find the value of k to 3 significant figures.

Given also that after two and three weeks there are 440 and 600 insects respectively,
(c) comment on suitability of the model.

An alternative model assumes that

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=P(0.4-0.25 \cos (0.5 t))
$$

(d) Using the initial data, $P=300$ when $t=0$, solve this differential equation.
(e) Compare the suitability of the two models.

