Solomon Practice Paper

Core Mathematics 3L
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	10	
7	12	
8	14	
Total:	75	

How I can achieve better:

1.

$$
\mathrm{f}(x) \equiv \frac{2 x-3}{x-2}, \quad x \in \mathbb{R}, x>2
$$

(a) Find the range of f .
(b) Show that $\mathrm{ff}(x)=x$ for all $x>2$.
(c) Hence, write down an expression for $\mathrm{f}^{-1}(x)$.
2. Solve each equation, giving your answers in exact form.
(a) $\mathrm{e}^{4 x-3}=2$
(b) $\ln (2 y-1)=1+\ln (3-y)$
3. The curve C has the equation $y=2 \mathrm{e}^{x}-6 \ln (x)$ and passes through the point P with x-coordinate 1.
(a) Find an equation for the tangent to C at P.

The tangent to C at P meets the coordinate axes at the points Q and R.
(b) Show that the area of triangle $O Q R$, where O is the origin, is $\frac{9}{3-\mathrm{e}}$.
4. (a) Express

$$
\frac{x-10}{(x-3)(x+4)}-\frac{x-8}{(x-3)(2 x-1)}
$$

as a single fraction in its simplest form.
(b) Hence, show that the equation

$$
\frac{x-10}{(x-3)(x+4)}-\frac{x-8}{(x-3)(2 x-1)}=1
$$

has no real roots.
5. Find the values of x in the interval $-180^{\circ}<x<180^{\circ}$ for which

$$
\tan (x+45)^{\circ}-\tan (x)^{\circ}=4
$$

giving your answers to 1 decimal place.
6. (a) Sketch on the same diagram the graphs of

$$
y=|x|-a \quad \text { and } \quad y=|3 x+5 a|
$$

where a is a positive constant.
Show on your diagram the coordinates of any points where each graph meets the coordinate axes.
(b) Solve the equation

$$
|x|-a=|3 x+5 a| .
$$

7. (a) Use the identity

$$
\cos (A+B) \equiv \cos (A) \cos (B)-\sin (A) \sin (B)
$$

to prove that

$$
\cos (x) \equiv 1-2 \sin ^{2}\left(\frac{x}{2}\right)
$$

(b) Prove that, for $\sin (x) \neq 0$,

$$
\frac{1-\cos (x)}{\sin (x)} \equiv \tan \left(\frac{x}{2}\right)
$$

(c) Find the values of x in the interval $0 \leq x \leq 360^{\circ}$ for which

$$
\frac{1-\cos (x)}{\sin (x)}=2 \sec ^{2}\left(\frac{x}{2}\right)-5
$$

giving your answers to 1 decimal place where appropriate.
8. A curve has the equation $y=(2 x+3) \mathrm{e}^{-x}$.
(a) Find the exact coordinates of the stationary point of the curve.

The curve crosses the y-axis at the point P.
(b) Find an equation for the normal to the curve at P.

The normal to the curve at P meets the curve again at Q.
(c) Show that the x-coordinate of Q lies in the interval $[-2,-1]$.
(d) Use the iterative formula

$$
x_{n+1}=\frac{3-3 \mathrm{e}^{x_{n}}}{\mathrm{e}^{x_{n}}-2}
$$

with $x_{0}=-1$, to find x_{1}, x_{2}, x_{3} and x_{4}. Give the value of x_{4} to 2 decimal places.
(e) Show that your value for x_{4} is the x-coordinate of Q correct to 2 decimal places.

