Solomon Practice Paper

Core Mathematics 3L

Time allowed: 90 minutes

Centre:	www.	Casper	YC	.club
---------	------	--------	----	-------

Name:

Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	9	
5	9	
6	10	
7	12	
8	14	
Total:	75	

How I can achieve better:

- •
- -
- •

Last updated: May 5, 2023

(a) Find the range of f.

1.

- (b) Show that ff(x) = x for all x > 2.
- (c) Hence, write down an expression for $f^{-1}(x)$.
- 2. Solve each equation, giving your answers in exact form.
 - (a) $e^{4x-3} = 2$ [3]
 - (b) $\ln(2y-1) = 1 + \ln(3-y)$ [4]

Total: 7

- 3. The curve C has the equation $y = 2e^x 6\ln(x)$ and passes through the point P with x-coordinate 1.
 - (a) Find an equation for the tangent to C at P.

The tangent to C at P meets the coordinate axes at the points Q and R.

- (b) Show that the area of triangle OQR, where O is the origin, is $\frac{9}{3-e}$.
- 4. (a) Express

$$\frac{x-10}{(x-3)(x+4)} - \frac{x-8}{(x-3)(2x-1)}$$

as a single fraction in its simplest form.

(b) Hence, show that the equation

$$\frac{x-10}{(x-3)(x+4)} - \frac{x-8}{(x-3)(2x-1)} = 1$$

has no real roots.

5. Find the values of x in the interval $-180^{\circ} < x < 180^{\circ}$ for which

$$\tan(x+45)^\circ - \tan(x)^\circ = 4,$$

giving your answers to 1 decimal place.

6. (a) Sketch on the same diagram the graphs of

$$y = |x| - a$$
 and $y = |3x + 5a|$

www.CasperYC.club

Last updated: May 5, 2023

Total: 6

[4]

[4]

[5]

[4]

Total: 9

[9]

[6]

Total: 8

[2]

[3]

[1]

where a is a positive constant.

Show on your diagram the coordinates of any points where each graph meets the coordinate axes.

(b) Solve the equation

$$|x| - a = |3x + 5a|.$$

Total: 10

[4]

[3]

[3]

[6]

[2]

7. (a) Use the identity

$$\cos(A+B) \equiv \cos(A)\cos(B) - \sin(A)\sin(B)$$

to prove that

$$\cos(x) \equiv 1 - 2\sin^2\left(\frac{x}{2}\right).$$

(b) Prove that, for $\sin(x) \neq 0$,

$$\frac{1 - \cos(x)}{\sin(x)} \equiv \tan\left(\frac{x}{2}\right).$$

(c) Find the values of x in the interval $0 \le x \le 360^{\circ}$ for which

$$\frac{1 - \cos(x)}{\sin(x)} = 2\sec^2\left(\frac{x}{2}\right) - 5.$$

giving your answers to 1 decimal place where appropriate.

Total: 12

- 8. A curve has the equation $y = (2x + 3)e^{-x}$.
 - (a) Find the exact coordinates of the stationary point of the curve. [4]

The curve crosses the y-axis at the point P.

(b) Find an equation for the normal to the curve at P.

The normal to the curve at P meets the curve again at Q.

- (c) Show that the x-coordinate of Q lies in the interval [-2, -1]. [3]
- (d) Use the iterative formula

$$x_{n+1} = \frac{3 - 3\mathrm{e}^{x_n}}{\mathrm{e}^{x_n} - 2},\tag{3}$$

with $x_0 = -1$, to find x_1, x_2, x_3 and x_4 . Give the value of x_4 to 2 decimal places.

(e) Show that your value for x_4 is the x-coordinate of Q correct to 2 decimal places. [2]

Total: 14

www.CasperYC.club

Last updated: May 5, 2023