Solomon Practice Paper

Core Mathematics 3K
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	8	
2	9	
3	9	
4	10	
5	12	
6	13	
7	14	
Total:	75	

How I can achieve better:

1. (a) Find the exact value of x such that

$$
3 \arctan (x-2)+\pi=0 .
$$

(b) Solve, for $-\pi<\theta<\pi$, the equation

$$
\cos (2 \theta)-\sin (\theta)-1=0,
$$

giving your answers in terms of π.
2. (a) Express

$$
\frac{4 x}{x^{2}-9}-\frac{2}{x+3}
$$

as a single fraction in its simplest form.
(b) Simplify

$$
\frac{x^{3}-8}{3 x^{2}-8 x+4} .
$$

3. Differentiate each of the following with respect to x and simplify your answers.
(a) $\cot \left(x^{2}\right)$
(b) $x^{2} \mathrm{e}^{-x}$
(c) $\frac{\sin (x)}{3+2 \cos (x)}$
4. (a) Find, as natural logarithms, the solutions of the equation

$$
\mathrm{e}^{2 x}-8 \mathrm{e}^{x}+15=0
$$

(b) Use proof by contradiction to prove that $\log _{2}(3)$ is irrational.
5. The function f is defined by

$$
\mathrm{f}: x \rightarrow 3 \mathrm{e}^{x-1}, \quad x \in \mathbb{R}
$$

(a) State the range of f.
(b) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.

The function g is defined by

$$
\mathrm{g}: x \rightarrow 5 x-2, \quad x \in \mathbb{R}
$$

Find, in terms of e,
(c) the value of $\operatorname{gf}(\ln (2))$,
(d) the solution of the equation $\mathrm{f}^{-1} \mathrm{~g}(x)=4$.
6.

$$
\mathrm{f}(x)=2 x^{2}+3 \ln (2-x) \quad x \in \mathbb{R}, x<2 .
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written in the form

$$
x=2-\mathrm{e}^{k x^{2}}
$$

where k is a constant to be found.
The root, α, of the equation $\mathrm{f}(x)=0$ is 1.9 correct to 1 decimal place.
(b) Use the iteration formula

$$
x_{n+1}=2-\mathrm{e}^{k x_{n}^{2}},
$$

with $x_{0}=1.9$ and your value of k, to find α to 3 decimal places and justify the accuracy of your answer.
(c) Solve the equation $\mathrm{f}^{\prime}(x)=0$.
7. Figure shows the curve $y=\mathrm{f}(x)$ which has

a maximum point at $(-45,7)$ and a minimum point at $(135,-1)$.
(a) Showing the coordinates of any stationary points, sketch on separate diagrams the graphs of
i. $y=\mathrm{f}(|x|)$,
ii. $y=1+2 \mathrm{f}(x)$.

Given that

$$
\mathrm{f}(x)=A+2 \sqrt{2} \cos \left(x^{\circ}\right)-2 \sqrt{2} \sin \left(x^{\circ}\right), \quad x \in \mathbb{R},-180 \leq x \leq 180,
$$

where A is a constant,
(b) show that $\mathrm{f}(x)$ can be expressed in the form

$$
\mathrm{f}(x)=A+R \cos (x+\alpha)^{\circ},
$$

where $R>0$ and $0<\alpha<90$,
(c) state the value of A,
(d) find, to 1 decimal place, the x-coordinates of the points where the curve $y=\mathrm{f}(x)$ crosses the x-axis.

