Solomon Practice Paper

Core Mathematics 3D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	5	
2	6	
3	8	
4	9	
5	10	
6	11	
7	12	
8	14	
Total:	75	

How I can achieve better:

•

•

•

1. The function f is defined by

$$f(x) \equiv 2 + \ln(3x - 2), \quad x \in \mathbb{R}, \quad x > \frac{2}{3}.$$

- (a) Find the exact value of ff(1). [2]
- (b) Find an expression for $f^{-1}(x)$.

Total: 5

[3]

2. Find, to 2 decimal places, the solutions of the equation

[6]

$$3\cot^2(x) - 4\csc(x) + \csc^2(x) = 0$$

in the interval $0 \le x \le 2\pi$.

3. (a) Given that $y = \ln(x)$, find expressions in terms of y for

i. $\log_2(x)$,

ii. $\ln\left(\frac{x^2}{e}\right)$.

(b) Hence, or otherwise, solve the equation

[4]

[4]

$$\log_2(x) = 4 - \ln\left(\frac{x^2}{e}\right),\,$$

giving your answer to 2 decimal places.

Total: 8

4. (a) Use the identities for $(\sin(A) + \sin(B))$ and $(\cos(A) + \cos(B))$ to prove that

[4]

$$\frac{\sin(2x) + \sin(2y)}{\cos(2x) + \cos(2y)} \equiv \tan(x+y).$$

(b) Hence, show that

 $\tan(52.5^{\circ}) = \sqrt{6} - \sqrt{3} - \sqrt{2} + 2.$

Total: 9

[5]

 $\lfloor 5 \rfloor$

[5]

5.

$$f(x) = 3 - \frac{x-1}{x-3} + \frac{x+11}{2x^2 - 5x - 3}, \quad x \in \mathbb{R}, x < -1.$$

(a) Show that

 $f(x) = \frac{4x - 1}{2x + 1}.$

(b) Find an equation for the tangent to the curve y = f(x) at the point where x = -2, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

Total: 10

- 6. A curve has the equation $y = e^{3x} \cos(2x)$.
 - (a) Find $\frac{dy}{dx}$. [2]
 - (b) Show that d^2u

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = e^{3x} (5\cos(2x) - 12\sin(2x)).$$

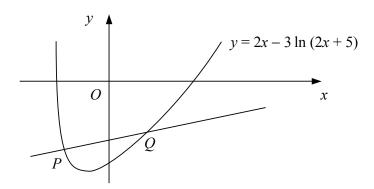
The curve has a stationary point in the interval [0,1].

- (c) Find the x-coordinate of the stationary point to 3 significant figures.
- (d) Determine whether the stationary point is a maximum or minimum point and justify your answer.

Total: 11

[4]

[2]


[6]

- 7. (a) Sketch on the same diagram the graphs of $y = 4a^2 x^2$ and y = |2x a|, where a is a positive constant. Show, in terms of a, the coordinates of any points where each graph meets the coordinate axes.
 - (b) Find the exact solutions of the equation

$$4 - x^2 = |2x - 1|$$
.

Total: 12

8. Figure shows the curve with equation $y = 2x - 3\ln(2x + 5)$ and the normal to the curve at the point P(-2, -4).

(a) Find an equation for the normal to the curve at P.

[4]

The normal to the curve at P intersects the curve again at the point Q with x-coordinate q.

(b) Show that 1 < q < 2.

[3]

(c) Show that q is a solution of the equation

[2]

$$x = \frac{12}{7}\ln(2x+5) - 2.$$

(d) Use the iterative formula

$$x_{n+1} = \frac{12}{7}\ln(2x_n + 5) - 2,$$

with $x_0 = 1.5$, to find the value of q to 3 significant figures and justify the accuracy of your answer.

Last updated: May 5, 2023

Total: 14

[5]

