Solomon Practice Paper

Core Mathematics 3C
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	6	
2	7	
3	8	
4	8	
5	9	
6	10	
7	13	
8	14	
Total:	75	

How I can achieve better:

1. (a) Express

$$
\frac{x+4}{2 x^{2}+3 x+1}-\frac{2}{2 x+1}
$$

as a single fraction in its simplest form.
(b) Hence, find the values of x such that

$$
\frac{x+4}{2 x^{2}+3 x+1}-\frac{2}{2 x+1}=\frac{1}{2} .
$$

2. (a) Prove, by counter-example, that the statement

$$
\csc (\theta)-\sin (\theta)>0 \text { for all values of } \theta \text { in the interval } 0<\theta<\pi
$$

is false.
(b) Find the values of θ in the interval $0<\theta<\pi$ such that

$$
\csc (\theta)-\sin (\theta)=2
$$

giving your answers to 2 decimal places.
3. Solve each equation, giving your answers in exact form.
(a) $\ln (2 x-3)=1$
(b) $3 \mathrm{e}^{y}+5 \mathrm{e}^{-y}=16$
4. Differentiate each of the following with respect to x and simplify your answers.
(a) $\ln (3 x-2)$
(b) $\frac{2 x+1}{1-x}$
(c) $x^{\frac{3}{2}} \mathrm{e}^{2 x}$
5. Figure shows the curve $y=\mathrm{f}(x)$ which has a maximum point at $(-3,2)$ and a minimum point at $(2,-4)$.

(a) Showing the coordinates of any stationary points, sketch on separate diagrams the graphs of
i. $y=\mathrm{f}(|x|)$,
ii. $y=3 \mathrm{f}(2 x)$.
(b) Write down the values of the constants a and b such that the curve with equation $y=$ $a+\mathrm{f}(x+b)$ has a minimum point at the origin O.
6. The function f is defined by

$$
\mathrm{f}(x) \equiv 4-\ln (3 x), x \in \mathbb{R}, x>0
$$

(a) Solve the equation $\mathrm{f}(x)=0$.
(b) Sketch the curve $y=\mathrm{f}(x)$.
(c) Find an expression for the inverse function, $\mathrm{f}^{-1}(x)$.

The function g is defined by

$$
\mathrm{g}(x) \equiv \mathrm{e}^{2-x}, x \in \mathbb{R}
$$

(d) Show that

$$
\mathrm{fg}(x)=x+a-\ln (b),
$$

where a and b are integers to be found.
Total: 10
7. (a) Express $4 \sin (x)+3 \cos (x)$ in the form $R \sin (x+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(b) State the minimum value of $4 \sin (x)+3 \cos (x)$ and the smallest positive value of x for which this minimum value occurs.
(c) Solve the equation

$$
4 \sin (2 \theta)+3 \cos (2 \theta)=2,
$$

for θ in the interval $0 \leq \theta \leq \pi$, giving your answers to 2 decimal places.
8. The curve C has the equation $y=\sqrt{x}+\mathrm{e}^{1-4 x}, x \geq 0$.
(a) Find an equation for the normal to the curve at the point $\left(\frac{1}{4}, \frac{3}{2}\right)$.

The curve C has a stationary point with x-coordinate α where $0.5<\alpha<1$.
(b) Show that α is a solution of the equation

$$
x=\frac{1}{4}[1+\ln (8 \sqrt{x})] .
$$

(c) Use the iteration formula

$$
x_{n+1}=\frac{1}{4}\left[1+\ln \left(8 \sqrt{x_{n}}\right)\right],
$$

with $x_{0}=1$ to find x_{1}, x_{2}, x_{3} and x_{4}, giving the value of x_{4} to 3 decimal places.
(d) Show that your value for x_{4} is the value of α correct to 3 decimal places.
(e) Another attempt to find α is made using the iteration formula

$$
x_{n+1}=\frac{1}{64} \mathrm{e}^{8 x_{n}-2}
$$

with $x_{0}=1$. Describe the outcome of this attempt.

