Solomon Practice Paper

Core Mathematics 3B
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	7	
2	9	
3	9	
4	10	
5	13	
6	13	
7	14	
Total:	75	

How I can achieve better:

1. (a) Simplify

$$
\frac{x^{2}+7 x+12}{2 x^{2}+9 x+4}
$$

(b) Solve the equation

$$
\ln \left(x^{2}+7 x+12\right)-1=\ln \left(2 x^{2}+9 x+4\right),
$$

giving your answer in terms of e.
2. A curve has the equation $y=\sqrt{3 x+11}$.

The point P on the curve has x-coordinate 3 .
(a) Show that the tangent to the curve at P has the equation

$$
3 x-4 \sqrt{5} y+31=0
$$

The normal to the curve at P crosses the y-axis at Q.
(b) Find the y-coordinate of Q in the form $k \sqrt{5}$.
3. (a) Use the identities for $\sin (A+B)$ and $\sin (A-B)$ to prove that

$$
\sin (P)+\sin (Q) \equiv 2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right)
$$

(b) Find, in terms of π, the solutions of the equation

$$
\sin (5 x)+\sin (x)=0
$$

for x in the interval $0 \leq x<\pi$.
4. The curve with equation

$$
y=x^{\frac{5}{2}} \ln \left(\frac{x}{4}\right), x>0
$$

crosses the x-axis at the point P.
(a) Write down the coordinates of P.

The normal to the curve at P crosses the y-axis at the point Q.
(b) Find the area of triangle $O P Q$ where O is the origin.

The curve has a stationary point at R.
(c) Find the x-coordinate of R in exact form.
5.

$$
\mathrm{f}(x) \equiv 2 x^{2}+4 x+2, \quad x \in \mathbb{R}, x \geq-1
$$

(a) Express $\mathrm{f}(x)$ in the form $a(x+b)^{2}+c$.
(b) Describe fully two transformations that would map the graph of $y=x^{2}, x \geq 0$ onto the graph of $y=\mathrm{f}(x)$.
(c) Find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.
(d) Sketch the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ on the same diagram and state the relationship between them.
6.

$$
\mathrm{f}(x)=\mathrm{e}^{3 x+1}-2, \quad x \in \mathbb{R}
$$

(a) State the range of f.

The curve $y=\mathrm{f}(x)$ meets the y-axis at the point P and the x-axis at the point Q.
(b) Find the exact coordinates of P and Q.
(c) Show that the tangent to the curve at P has the equation

$$
y=3 \mathrm{e} x+\mathrm{e}-2 .
$$

(d) Find to 3 significant figures the x-coordinate of the point where the tangent to the curve at P meets the tangent to the curve at Q.
7. (a) Solve the equation

$$
\pi-3 \arccos (\theta)=0
$$

(b) Sketch on the same diagram the curves

$$
y=\arccos (x-1), 0 \leq x \leq 2, \quad \text { and } \quad y=\sqrt{x+2}, x \geq-2 .
$$

Given that α is the root of the equation

$$
\arccos (x-1)=\sqrt{x+2},
$$

(c) show that $0<\alpha<1$,
(d) use the iterative formula

$$
x_{n+1}=1+\cos \left(\sqrt{x_{n}+2}\right)
$$

with $x_{0}=1$ to find α correct to 3 decimal places.五

