Solomon Practice Paper

Core Mathematics 2I
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	4	
2	5	
3	6	
4	7	
5	9	
6	10	
7	10	
8	10	
9	14	
Total:	75	

How I can achieve better:

1. Figure shows the sector $O A B$ of a circle of radius 9.2 cm and centre O.

Given that the area of the sector is $37.4 \mathrm{~cm}^{2}$, find to 3 significant figures
(a) the size of $\angle A O B$ in radians,
(b) the perimeter of the sector.
2. The first three terms of a geometric series are $(p-1), 2$ and $(2 p+5)$ respectively, where p is a constant.

Find the two possible values of p.
3. Find the area of the finite region enclosed by the curve $y=5 x-x^{2}$ and the x-axis.
4. Solve the equation

$$
\sin ^{2}(\theta)=4 \cos (\theta)
$$

for values of θ in the interval $0 \leq \theta \leq 360^{\circ}$.
5. Given that

$$
\mathrm{f}(x)=x^{3}+7 x^{2}+p x-6,
$$

and that $x=-3$ is a solution to the equation $\mathrm{f}(x)=0$,
(a) find the value of the constant p,
(b) show that when $\mathrm{f}(x)$ is divided by $(x-2)$ there is a remainder of 50 ,
(c) find the other solutions to the equation $\mathrm{f}(x)=0$, giving your answers to 2 decimal places.
6. The circle C has the equation

$$
x^{2}+y^{2}-12 x+8 y+16=0 .
$$

(a) Find the coordinates of the centre of C.
(b) Find the radius of C.
(c) Sketch C.

Given that C crosses the x-axis at the points A and B,
(d) find the length $A B$, giving your answer in the form $k \sqrt{5}$.
7. Given that for small values of x

$$
(1+a x)^{n} \approx 1-24 x+270 x^{2}
$$

where n is an integer and $n>1$,
(a) show that $n=16$ and find the value of a,
(b) use your value of a and a suitable value of x to estimate the value of $(0.9985)^{16}$, giving your answer to 5 decimal places.
8. (a) Given that

$$
\log _{2}(y-1)=1+\log _{2}(x)
$$

show that

$$
y=2 x+1
$$

(b) Solve the simultaneous equations

$$
\begin{aligned}
\log _{2}(y-1) & =1+\log _{2}(x) \\
2 \log _{3}(y) & =2+\log _{3}(x)
\end{aligned}
$$

9. Figure shows a tray made from sheet metal.

The horizontal base is a rectangle measuring $8 x \mathrm{~cm}$ by $y \mathrm{~cm}$ and the two vertical sides are trapezia of height $x \mathrm{~cm}$ with parallel edges of length $8 x \mathrm{~cm}$ and $10 x \mathrm{~cm}$. The remaining two sides are rectangles inclined at 45° to the horizontal.

Given that the capacity of the tray is $900 \mathrm{~cm}^{3}$,
(a) find an expression for y in terms of x,
(b) show that the area of metal used to make the tray, $A \mathrm{~cm}^{2}$, is given by

$$
A=18 x^{2}+\frac{200(4+\sqrt{2})}{x}
$$

(c) find to 3 significant figures, the value of x for which A is stationary,
(d) find the minimum value of A and show that it is a minimum.

