Solomon Practice Paper

Core Mathematics 2G
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	5	
2	6	
3	6	
4	7	
5	8	
6	8	
7	11	
8	12	
9	12	
Total:	75	

How I can achieve better:

1. Evaluate

$$
\int_{-2}^{0}(3 x-1)^{2} \mathrm{~d} x .
$$

2.

$$
\mathrm{f}(x)=x^{3}+k x-20 .
$$

Given that $\mathrm{f}(x)$ is exactly divisible by $(x+1)$,
(a) find the value of the constant k,
(b) solve the equation $\mathrm{f}(x)=0$.
3. (a) Given that

$$
5 \cos (\theta)-2 \sin (\theta)=0
$$

show that $\tan (\theta)=2.5$.
(b) Solve, for $0 \leq x \leq 180$, the equation

$$
5 \cos \left(2 x^{\circ}\right)-2 \sin \left(2 x^{\circ}\right)=0,
$$

giving your answers to 1 decimal place.
4. Solve each equation, giving your answers to an appropriate degree of accuracy.
(a) $3^{x-2}=5$.
(b) $\log _{2}(6-y)=3-\log _{2}(y)$.
5. A geometric series has third term 36 and fourth term 27. Find
(a) the common ratio of the series,
(b) the fifth term of the series,
(c) the sum to infinity of the series.
6. Figure shows the curve with equation $y=(x-\log (x))^{2}, x>0$.

(a) Copy and complete the table below for points on the curve, giving the y values to 2 decimal places.

x	2	3	4	5	6
y	2.89	6.36			

The shaded area is bounded by the curve, the x-axis and the lines $x=2$ and $x=6$.
(b) Use the trapezium rule with all the values in your table to estimate the area of the shaded region.
(c) State, with a reason, whether your answer to part (b) is an under-estimate or an overestimate of the true area.
7.

$$
\mathrm{f}(x)=2+6 x^{2}-x^{3}
$$

(a) Find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$.
(b) Determine whether each stationary point is a maximum or minimum point.
(c) Sketch the curve $y=\mathrm{f}(x)$.
(d) State the set of values of k for which the equation $\mathrm{f}(x)=k$ has three solutions.
8. Figure shows the circle C and the straight line l.

The centre of C lies on the x-axis and l intersects C at the points $A(2,4)$ and $\mathrm{B}(8,-8)$.
(a) Find the gradient of l.
(b) Find the coordinates of the mid-point of $A B$.
(c) Find the coordinates of the centre of C.
(d) Show that C has the equation $x^{2}+y^{2}-18 x+16=0$.
9. Figure shows a design painted on the wall at a karting track.

The sign consists of triangle $A B C$ and two circular sectors of radius 2 metres and 1 metre with centres A and B respectively.

Given that $A B=7 \mathrm{~m}, A C=3 \mathrm{~m}$ and $\angle A C B=2.2$ radians,
(a) use the sine rule to find the size of $\angle A B C$ in radians to 3 significant figures,
(b) show that $\angle B A C=0.588$ radians to 3 significant figures,
(c) find the area of triangle $A B C$,
(d) find the area of the wall covered by the design.

