Solomon Practice Paper

Core Mathematics 2C
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	4	
2	5	
3	7	
4	8	
5	9	
6	9	
7	10	
8	10	
9	13	
Total:	75	

How I can achieve better:

1. Find the coefficient of x^{2} in the expansion of

$$
(1+x)(1-x)^{6} .
$$

2. A geometric series has common ratio $\frac{1}{3}$.

Given that the sum of the first four terms of the series is 200 ,
(a) find the first term of the series,
(b) find the sum to infinity of the series.
3. Figure shows the curve $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=4+5 x+k x^{2}-2 x^{3}$, and k is a constant.

The curve crosses the x-axis at the points A, B and C. Given that A has coordinates $(-4,0)$,
(a) show that $k=-7$,
(b) find the coordinates of B and C.
4. (a) i. Sketch the curve $y=\sin (x-30)^{\circ}$ for x in the interval $-180 \leq x \leq 180$.
ii. Write down the coordinates of the turning points of the curve in this interval.
(b) Find all values of x in the interval $-180 \leq x \leq 180$ for which

$$
\sin (x-30)^{\circ}=0.35
$$

giving your answers to 1 decimal place.
5. (a) Evaluate $\log _{3}(27)-\log _{8}(4)$.
(b) Solve the equation $4^{x}-3\left(2^{x+1}\right)=0$.
6.

$$
\mathrm{f}(x)=2-x+3 x^{\frac{2}{3}}, \quad x>0
$$

(a) Find $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$.
(b) Find the coordinates of the turning point of the curve $y=\mathrm{f}(x)$.
(c) Determine whether the turning point is a maximum or minimum point.
7. The points P, Q and R have coordinates $(-5,2),(-3,8)$ and $(9,4)$ respectively.
(a) Show that $\angle P Q R=90^{\circ}$.

Given that P, Q and R all lie on circle C,
(b) find the coordinates of the centre of C,
(c) show that the equation of C can be written in the form

$$
x^{2}+y^{2}-4 x-6 y=k,
$$

where k is an integer to be found.
8. Figure shows a circle of radius 12 cm which passes through the points P and Q.

The chord $P Q$ subtends an angle of 120° at the centre of the circle.
(a) Find the exact length of the major arc $P Q$.
(b) Show that the perimeter of the shaded minor segment is given by $k(2 \pi+3 \sqrt{3}) \mathrm{cm}$, where k is an integer to be found.
(c) Find, to 1 decimal place, the area of the shaded minor segment as a percentage of the area of the circle.
9. The finite region R is bounded by the curve $y=1+3 \sqrt{x}$, the x-axis and the lines $x=2$ and $x=8$.
(a) Use the trapezium rule with three intervals of equal width to estimate to 3 significant figures the area of R.
(b) Use integration to find the exact area of R in the form $a+b \sqrt{2}$.
(c) Find the percentage error in the estimate made in part (a).

