Solomon Practice Paper

Core Mathematics 2C

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	4	
2	5	
3	7	
4	8	
5	9	
6	9	
7	10	
8	10	
9	13	
Total:	75	

How I can achieve better:

- •
- •
- •

Last updated: May 5, 2023

1. Find the coefficient of x^2 in the expansion of

$$(1+x)(1-x)^6$$
.

2. A geometric series has common ratio $\frac{1}{3}$.

Given that the sum of the first four terms of the series is 200,

- (a) find the first term of the series,
- (b) find the sum to infinity of the series.
- 3. Figure shows the curve y = f(x) where $f(x) = 4 + 5x + kx^2 2x^3$, and k is a constant.

The curve crosses the x-axis at the points A, B and C. Given that A has coordinates (-4, 0),

(a) show that $k = -7$,	[2]
--------------------------	-----

- (b) find the coordinates of B and C.
- i. Sketch the curve $y = \sin(x 30)^\circ$ for x in the interval $-180 \le x \le 180$. 4. (a)[4]ii. Write down the coordinates of the turning points of the curve in this interval.
 - (b) Find all values of x in the interval $-180 \le x \le 180$ for which

$$\sin(x - 30)^{\circ} = 0.35,$$

giving your answers to 1 decimal place.

- (a) Evaluate $\log_3(27) \log_8(4)$. 5.
 - (b) Solve the equation $4^x 3(2^{x+1}) = 0$.

6.

$$f(x) = 2 - x + 3x^{\frac{2}{3}}, \quad x > 0.$$

Last updated: May 5, 2023

[3]

[2]

Total: 5

[4]

Total: 8

Total: 9

[4]

[5]

[5]

[4]

Total: 7

(a) Find $f'(x)$ and $f''(x)$.	[3]
(b) Find the coordinates of the turning point of the curve $y = f(x)$.	[4]
(c) Determine whether the turning point is a maximum or minimum point.	[2]
	Total: 9
7. The points P, Q and R have coordinates $(-5, 2), (-3, 8)$ and $(9, 4)$ respectively.	
(a) Show that $\angle PQR = 90^{\circ}$.	[4]

Given that P, Q and R all lie on circle C,

- (b) find the coordinates of the centre of C,
 - (c) show that the equation of C can be written in the form

$$x^2 + y^2 - 4x - 6y = k,$$

where k is an integer to be found.

Total: 10

[3]

[3]

8. Figure shows a circle of radius 12 cm which passes through the points P and Q.

The chord PQ subtends an angle of 120° at the centre of the circle.

- (a) Find the exact length of the major arc PQ.
- (b) Show that the perimeter of the shaded minor segment is given by $k(2\pi + 3\sqrt{3})$ cm, where k [4] is an integer to be found.
- (c) Find, to 1 decimal place, the area of the shaded minor segment as a percentage of the area [4] of the circle.

Total: 10

[2]

- 9. The finite region R is bounded by the curve $y = 1 + 3\sqrt{x}$, the x-axis and the lines x = 2 and x = 8.
 - (a) Use the trapezium rule with three intervals of equal width to estimate to 3 significant figures [6] the area of R.

www.CasperYC.club

Last updated: May 5, 2023

