Solomon Practice Paper

Core Mathematics 1K
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	3	
2	4	
3	6	
4	6	
5	6	
6	7	
7	7	
8	13	
9	14	
Total:	75	

How I can achieve better:

1. Find the value of y such that

$$
4^{y+3}=8
$$

2. Find

$$
\int 3 x^{2}+\frac{1}{2 x^{2}} \mathrm{~d} x
$$

3. Figure shows the rectangles $A B C D$ and $E F G H$ which are similar.

Given that $A B=(3-\sqrt{5}) \mathrm{cm}, A D=\sqrt{5} \mathrm{~cm}$ and $E F=(1+\sqrt{5}) \mathrm{cm}$, find the length $E H$ in cm , giving your answer in the form $a+b \sqrt{5}$ where a and b are integers.
4. (a) Sketch on the same diagram the curves $y=x^{2}-4 x$ and $y=-\frac{1}{x}$.
(b) State, with a reason, the number of real solutions to the equation

$$
x^{2}-4 x+\frac{1}{x}=0 .
$$

5. (a) By completing the square, find in terms of the constant k the roots of the equation

$$
x^{2}+2 k x+4=0
$$

(b) Hence find the exact roots of the equation

$$
x^{2}+6 x+4=0 .
$$

6. (a) Evaluate

$$
\sum_{r=1}^{50} 80-3 r
$$

(b) Show that

$$
\sum_{r=1}^{n} \frac{r+3}{2}=k n(n+7),
$$

where k is a rational constant to be found.
7. Solve the simultaneous equations

$$
\begin{aligned}
x-3 y+7 & =0 \\
x^{2}+2 x y-y^{2} & =7
\end{aligned}
$$

8. Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{3}-4}{x^{3}}, \quad x \neq 0
$$

(a) find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.

Given also that $y=0$ when $x=-1$,
(b) find the value of y when $x=2$.
9. A curve has the equation $y=(\sqrt{x}-3)^{2}, x \geq 0$.
(a) Show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{3}{\sqrt{x}}
$$

The point P on the curve has x-coordinate 4 .
(b) Find an equation for the normal to the curve at P in the form $y=m x+c$.
(c) Show that the normal to the curve at P does not intersect the curve again.
10. The straight line l has gradient 3 and passes through the point $A(-6,4)$.
(a) Find an equation for l in the form $y=m x+c$.

The straight line m has the equation $x-7 y+14=0$.
Given that m crosses the y-axis at the point B and intersects l at the point C,
(b) find the coordinates of B and C,
(c) show that $\angle B A C=90^{\circ}$,
(d) find the area of triangle $A B C$.

