Question	Points	Score
1	3	
2	3	
3	4	
4	5	
5	6	
6	8	
7	10	
8	11	
9	12	
10	13	
Total:	75	

Solomon Practice Paper

Core Mathematics 1F

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

How I can achieve better:

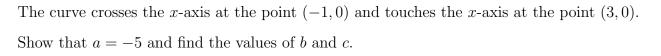
- •
- •
- -
- •

1. Find in exact form the real solutions of the equation

$$x^4 = 5x^2 + 14.$$

2. Express

$$\frac{2}{3\sqrt{5}+7}$$
[3]


in the form $a + b\sqrt{5}$ where a and b are rational.

- 3. (a) Solve the equation $x^{\frac{3}{2}} = 27$. [2]
 - (b) Express $(2\frac{1}{4})^{-\frac{1}{2}}$ as an exact fraction in its simplest form.

x

Total: 4

4. Figure shows the curve with equation $y = x^3 + ax^2 + bx + c$, where a, b and c are constants. [5]

5. Given that

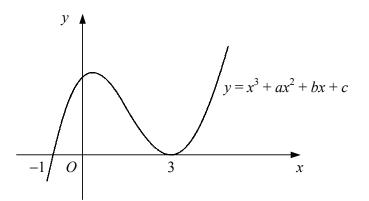
$$y = \frac{x^4 - 3}{2x^2},$$

(a) find $\frac{\mathrm{d}y}{\mathrm{d}x}$,

(b) show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{x^4 - 9}{x^4}.$$
[2]

Total: 6


[4]

6. (a) Sketch on the same diagram the curve with equation $y = (x-2)^2$ and the straight line with [5]equation y = 2x - 1.

Label on your sketch the coordinates of any points where each graph meets the coordinate axes.

Last updated: May 5, 2023

[2]

(b) Find the set of values of x for which

$$(x-2)^2 > 2x - 1.$$

7. A curve has the equation

The point A on the curve has x-coordinate 2.

- (a) Find the gradient of the curve at A.
- (b) Show that the tangent to the curve at A has equation
 - 3x 4y + 8 = 0.

 $y = \frac{x}{2} + 3 - \frac{1}{x}, x \neq 0.$

The tangent to the curve at the point B is parallel to the tangent at A.

(c) Find the coordinates of B.

8. The straight line l_1 has gradient $\frac{3}{2}$ and passes through the point A(5,3).

(a)) Find ai	n equation	for l_1	in the	e form	y = mx + c.
-----	-----------	------------	-----------	--------	--------	-------------

The straight line l_2 has the equation 3x - 4y + 3 = 0 and intersects l_1 at the point B.

- (b) Find the coordinates of B.
- (c) Find the coordinates of the mid-point of AB.
- (d) Show that the straight line parallel to l_2 which passes through the mid-point of AB also [4] passes through the origin.
- 9. The third term of an arithmetic series is $5\frac{1}{2}$.

The sum of the first four terms of the series is $22\frac{3}{4}$.

- (a) Show that the first term of the series is $6\frac{1}{4}$ and find the common difference.
- (b) Find the number of positive terms in the series.
- (c) Hence, find the greatest value of the sum of the first n terms of the series.

Total: 12

10. The curve C has the equation y = f(x).

Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 8x - \frac{2}{x^3}, \quad x \neq 0$$

and that the point P(1,1) lies on C,

www.CasperYC.club

Last updated: May 5, 2023

[3]

[4]

[3]

[3]

[2]

[3]

[2]

[7]

[3]

[2]

Total: 11

Total: 8

Total: 10

Core Mathematics – Practice Paper 1F

(a) find an equation for the tangent to C at P in the form $y = mx + c$,	[3]
(b) find an equation for C ,	[5]
(c) find the x-coordinates of the points where C meets the x-axis, giving your answers in the form $k\sqrt{2}$.	[5]

Total: 13

