Solomon Practice Paper

Core Mathematics 1D

Time allowed: 90 minutes

Centre: www.CasperYC.club

Name:

Teacher:

Question	Points	Score
1	3	
2	4	
3	4	
4	6	
5	7	
6	7	
7	10	
8	10	
9	11	
10	13	
Total:	75	

How I can achieve better:

•

•

•

1. Express $\sqrt{50} + 3\sqrt{8}$ in the form $k\sqrt{2}$.

[3]

[4]

2. Differentiate with respect to x

$$3x^2 - \sqrt{x} + \frac{1}{2x}.$$

3. A sequence is defined by the recurrence relation

$$u_{n+1} = u_n - 2, \quad n > 0, \quad u_1 = 50.$$

(a) Write down the first four terms of the sequence.

[1]

[3]

(b) Evaluate

 $\sum_{r=1}^{20} u_r.$

Total: 4

- 4. (a) Find the value of the constant k such that the equation
 - the equation [2]

$$x^2 - 6x + k = 0$$

has equal roots.

- (b) Solve the inequality
- $2x^2 9x + 4 < 0.$

Total: 6

[4]

[7]

[7]

5. Solve the simultaneous equations

$$x + y = 2$$

$$3x^2 - 2x + y^2 = 2$$

6. Given that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\sqrt{x} - x^2,$$

and that $y = \frac{2}{3}$ when x = 1, find the value of y when x = 4.

- 7. The first three terms of an arithmetic series are (12-p), 2p and (4p-5) respectively, where p is a constant.
 - (a) Find the value of p.

[2]

(b) Show that the sixth term of the series is 50.

[3]

(c) Find the sum of the first 15 terms of the series.

[2]

[3]

(d) Find how many terms of the series have a value of less than 400.

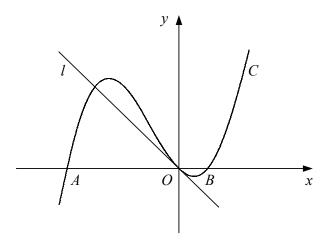
Total: 10

8.

$$f(x) = 2x^2 + 3x - 2.$$

- (a) Solve the equation f(x) = 0.
- (b) Sketch the curve with equation y = f(x), showing the coordinates of any points of intersection with the coordinate axes.
- (c) Find the coordinates of the points where the curve with equation $y = f(\frac{1}{2}x)$ crosses the coordinate axes. [3]

When the graph of y = f(x) is translated by 1 unit in the positive x-direction it maps onto the graph with equation $y = ax^2 + bx + c$, where a, b and c are constants.


(d) Find the values of a, b and c.

Total: 10

[3]

[2]

9. Figure shows the curve C with the equation $y = x^3 + 3x^2 - 4x$ and the straight line l.

The curve C crosses the x-axis at the origin, O, and at the points A and B.

(a) Find the coordinates of A and B.

[3]

The line l is the tangent to C at O.

(b) Find an equation for l.

[4]

[4]

(c) Find the coordinates of the point where l intersects C again.

Total: 11

- 10. The straight line l_1 has equation 2x + y 14 = 0 and crosses the x-axis at the point A.
 - (a) Find the coordinates of A.

[2]

The straight line l_2 is parallel to l_1 and passes through the point B(-6,6).

(b) Find an equation for l_2 in the form y = mx + c.

[3]

The line l_2 crosses the x-axis at the point C.

The point D lies on l_1 and is such that CD is perpendicular to l_1 .

- (d) Show that D has coordinates (5,4).
- (e) Find the area of triangle ACD.

(c) Find the coordinates of C.

[5]

[1]

[2]

Total: 13

Last updated: May 5, 2023