Solomon Practice Paper

Core Mathematics 1A
Time allowed: 90 minutes

Centre: www.CasperYC.club
Name:
Teacher:

Question	Points	Score
1	4	
2	4	
3	5	
4	6	
5	7	
6	8	
7	9	
9	11	
10	11	
Total:	75	

How I can achieve better:

1. (a) Express $\frac{21}{\sqrt{7}}$ in the form $k \sqrt{7}$.
(b) Express $8^{-\frac{1}{3}}$ as an exact fraction in its simplest form.
2. Evaluate

$$
\sum_{r=10}^{30} 7+2 r
$$

3. Differentiate with respect to x

$$
\frac{6 x^{2}-1}{2 \sqrt{x}}
$$

4. (a) Solve the inequality $x^{2}+3 x>10$.
(b) Find the set of values of x which satisfy both of the following inequalities:

$$
3 x-2<x+3 \quad \text { and } \quad x^{2}+3 x>10
$$

5. The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by the recurrence relation

$$
u_{n+1}=\left(u_{n}\right)^{2}-1, \quad n \geq 1 .
$$

Given that $u_{1}=k$, where k is a constant,
(a) find expressions for u_{2} and u_{3} in terms of k.

Given also that $u_{2}+u_{3}=11$,
(b) find the possible values of k.
6. (a) By completing the square, find in terms of the constant k the roots of the equation

$$
x^{2}+4 k x-k=0
$$

(b) Hence find the set of values of k for which the equation has no real roots.
7. (a) Describe fully a single transformation that maps the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{3}{x}$.
(b) Sketch the graph of $y=\frac{3}{x}$ and write down the equations of any asymptotes.
(c) Find the values of the constant c for which the straight line $y=c-3 x$ is a tangent to the curve $y=\frac{3}{x}$.
8. The points P and Q have coordinates $(7,4)$ and $(9,7)$ respectively.
(a) Find an equation for the straight line l which passes through P and Q.

Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
The straight line m has gradient 8 and passes through the origin, O.
(b) Write down an equation for m.

The lines l and m intersect at the point R.
(c) Show that $O P=O R$.
9. Figure below shows the curve with equation $y=\mathrm{f}(x)$ which crosses the x-axis at the origin and at the points A and B.

Given that

$$
\mathrm{f}^{\prime}(x)=6-4 x-3 x^{2},
$$

(a) find an expression for y in terms of x,
(b) show that $A B=k \sqrt{7}$, where k is an integer to be found.
10. A curve has the equation $y=x+\frac{3}{x}, x \neq 0$.

The point P on the curve has x-coordinate 1 .
(a) Show that the gradient of the curve at P is -2 .
(b) Find an equation for the normal to the curve at P, giving your answer in the form $y=m x+c$.
(c) Find the coordinates of the point where the normal to the curve at P intersects the curve again.

